SUMMATIVE ASSESSMENT -I (2011) संकलित परीक्षा -।
 MATHEMATICS / गणित
 Class - IX / कक्षा - IX

Maximum Marks: 90
निर्धारित समय : 3 घण्टे
अधिकतम अंक : 90

General Instructions:

(i) All questions are compulsory.
(ii) The question paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 8 questions of 1 mark each, section B comprises of 6 questions of 2 marks each, section C comprises of 10 questions of 3 marks each and section D comprises 10 questions of 4 marks each.
(iii) Question numbers 1 to 10 in section-A are multiple choice questions where you are to select one correct option out of the given four.
(iv) There is no overall choice. However, internal choice have been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculator is not permitted.

सामान्य निर्देश :
(i) सभी प्रश्न अनिवार्य हैं।
(ii) इस प्रश्न पत्र में 34 प्रश्न हैं, जिन्हें चार खण्डों अ, ब, स तथा द में बांटा गया है। खण्ड - अ में 8 प्रश्न हैं जिनमें प्रत्येक 1 अंक का है, खण्ड - ब में 6 प्रश्न हैं जिनमें प्रत्येक के 2 अंक हैं, खण्ड - स में 10 प्रश्न हैं जिनमें प्रत्येक के 3 अंक है तथा खण्ड - द में 10 प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं।
(iii) खण्ड अ में प्रश्न संख्या 1 से 10 तक बहुविकल्पीय प्रश्न हैं जहां आपको चार विकल्पों में से एक सही विकल्प चुनना है।
(iv) इस प्रश्न पत्र में कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 2 अंकों के एक प्रश्न में, 3 अंकों के 3 प्रश्नों में और 4 अंकों के 2 प्रश्नों में दिए गए हैं। प्रत्येक प्रश्न में एक विकल्प का चयन करें।
(v) कैलकुलेटर का प्रयोग वर्जित है।

Section-A

Question numbers 1 to 8 carry one mark each. For each question, four alternative choices have been provided of which only one is correct. You have to select the correct choice.

1. The simplified form of $\frac{13^{1 / 5}}{13^{1 / 3}}$ is :
(A) $13^{2 / 15}$
(B) $138 / 15$
(C) $13^{1 / 3}$
(D) $13^{-2 / 15}$ $\frac{13^{1 / 5}}{13^{1 / 3}}$ का सरलतम रूप है :
(A) $13^{2 / 15}$
(B) $138 / 15$
(C) $13^{1 / 3}$
(D) $13^{-2 / 15}$
2. Which of the following is a polynomial in one variable :
(A) $3-x^{2}+x$
(B) $\sqrt{3 x}+4$
(C) $x^{3}+y^{3}+7$
(D) $x+\frac{1}{x}$

निम्न में कौन एक चरांक का बहुपद है :
(A) $3-x^{2}+x$
(B) $\sqrt{3 x}+4$
(C) $x^{3}+y^{3}+7$
(D) $x+\frac{1}{x}$
3. Which of the following is a quadratic polynomial ?
(A) $3 x^{3}+5 x+4$
(B) $5+3 x+2 x^{2}+7 x^{3}$
(C) $x^{2}+\frac{1}{x}+3$
(D) $(x-1)(x+1)$

निम्न में से कौन सा बहुपद द्विघाती है ?
(A) $3 x^{3}+5 x+4$
(B) $5+3 x+2 x^{2}+7 x^{3}$
(C) $x^{2}+\frac{1}{x}+3$
(D) $(x-1)(x+1)$
4. If $\frac{x}{y}+\frac{y}{x}=-1,(x, y \neq 0)$, then, the value of $x^{3}-y^{3}$ is :
(A) 1
(B) -1
(C) 0
(D) $\frac{1}{2}$
यदि $\frac{x}{y}+\frac{y}{x}=-1,(x, y \neq 0)$ है, तो $x^{3}-y^{3}$ का मान है :
(A) 1
(B) -1
(C) 0
(D) $\frac{1}{2}$
5. Value of x in the figure below is :

(A) 80°
(B) 40°
(C) 160°
(D) 20°

निम्न आकृति में, x का मान है :

(A) 80°
(B) 40°
(C) 160°
(D) 20°
6. In $\triangle A B C$, if $A B=A C, B=50^{\circ}$, then A is equal to :
(A) 40°
(B) 50°
(C) 80°
(D) 130°
$\triangle A B C$ में, यदि $A B=A C, B=50^{\circ}$ है, तो A बराबर है :
(A) 40°
(B) 50°
(C) 80°
(D) 130°
7. A square and an equilateral triangle have equal perimeters. If the diagonal of the square is $12 \sqrt{2} \mathrm{~cm}$ then area of the triangle is :
(A) $24 \sqrt{2} \mathrm{~cm}^{2}$
(B) $24 \sqrt{3} \mathrm{~cm}^{2}$
(C) $48 \sqrt{3} \mathrm{~cm}^{2}$
(D) $64 \sqrt{3} \mathrm{~cm}^{2}$

एक वर्ग तथा समबाहु त्रिभुज का परिमाप बराबर है। यदि वर्ग का कर्ण $12 \sqrt{2}$ सेमी है, तो त्रिभुज का क्षेत्रफल है :
(A) $24 \sqrt{2}$ सेमी 2
(B) $24 \sqrt{3}$ सेमी ${ }^{2}$
(C) $48 \sqrt{3}$ सेमी 2
(D) $64 \sqrt{3}$ सेमी 2
8. The side of an isosceles right triangle of hypotenuse $5 \sqrt{2} \mathrm{~cm}$ is :
(A) 10 cm
(B) 8 cm
(C) 5 cm
(D) $3 \sqrt{2} \mathrm{~cm}$

एक समकोणीय समद्विबाह त्रिभुज के कर्ण की लम्बाई $5 \sqrt{2}$ सेमी है। इस की भुजा की लम्बाई है :
(A) 10 सेमी
(B) 8 सेमी
(C) 5 सेमी
(D) $3 \sqrt{2}$ सेमी

Section-B

Question numbers 9 to 14 carry two marks each.

9. If $x=3+2 \sqrt{2}$, then find whether $x+\frac{1}{x}$ is rational or irrational.

यदि $x=3+2 \sqrt{2}$, तो ज्ञात कीजिए कि $x+\frac{1}{x}$ एक परिमेय संख्या है या अपरिमेय?
10. Without actually calculating the cubes, find the values of $55^{3}-25^{3}-30^{3}$.

घनों का परिकलन किए बिना, $55^{3}-25^{3}-30^{3}$ का मान ज्ञात कीजिए।
11. If $x+y=8$ and $x y=15$, find $x^{2}+y^{2}$.

यदि $x+y=8$ और $x y=15$, तो $x^{2}+y^{2}$ का मान ज्ञात कीजिए।
12. In the given figure, if $\angle P O R$ and $\angle Q O R$ form a linear pair and $a-b=80^{\circ}$, then find the value of a and b.

दी गई आकृति में, यदि $\angle P O R$ और $\angle Q O R$ एक रैखिक युग्म बनाते हैं तथा $a-b=80^{\circ}$ है, तो a तथा b के मान ज्ञात कीजिए।

13. In figure, $\angle \mathrm{B}=\angle \mathrm{E}, \mathrm{BD}=\mathrm{CE}$ and $\angle 1=\angle 2$. Show $\triangle \mathrm{ABC} \cong \triangle \mathrm{AED}$.

आकृति में $\angle \mathrm{B}=\angle \mathrm{E}, \mathrm{BD}=\mathrm{CE}$ और $\angle 1=\angle 2$ है। दर्शाइए कि $\triangle \mathrm{ABC} \cong \triangle \mathrm{AED}$.

OR

In the figure given below $A C>A B$ and $A D$ is the bisector of $\angle A$. Show that $\angle A D C>\angle A D B$.

चित्र में $A C>A B$ और $\angle A$ का समद्विभाजक $A D$ है। दर्शाइए कि $\angle A D C>\angle A D B$.

14. Find the co-ordinates of the point which lies on y-axis at a distance of 4 units in negative direction of y-axis.
(A) $(-4,0)$
(B) $(4,0)$
(C) $(0,-4)$
(D) $(0,4)$

उस बिन्दु के, जो y-अक्ष की ऋण दिशा में 4 एकक दूरी पर है, निर्देशांक ज्ञात कीजिए।
(A) $(-4,0)$
(B) $(4,0)$
(C) $(0,-4)$
(D) $(0,4)$

Section-C

Question numbers $\mathbf{1 5}$ to $\mathbf{2 4}$ carry three marks each.

15. Represent $\sqrt{2}$ on the number line.
$\sqrt{2}$ को संख्या रेखा पर निरुपित कीजिए।

OR

Express $18 . \overline{48}$ in the form of $\frac{\mathrm{p}}{\mathrm{q}}$ where p and q are integers, $\mathrm{q} \neq 0$.
$18 . \overline{48}$ को $\frac{\mathrm{p}}{\mathrm{q}}$ के रूप में व्यक्त कीजिए जहाँ p और q पूर्णांक हैं तथा $\mathrm{q} \neq 0$
16. If $x=5-2 \sqrt{6}$ then find the value of $x^{2}+\frac{1}{x^{2}}$.

यदि $x=5-2 \sqrt{6}$ हो, तो $x^{2}+\frac{1}{x^{2}}$ का मान ज्ञात कीजिए।
17. If $x+\frac{1}{x}=7$, then find the value of $x^{3}+\frac{1}{x^{3}}$.

यदि $x+\frac{1}{x}=7$ है, तो $x^{3}+\frac{1}{x^{3}}$ का मान ज्ञात कीजिए।

OR
Factorise : $x^{3}-3 x^{2}-10 x+24$

गुणनखंड कीजिए : $x^{3}-3 x^{2}-10 x+24$
18. Using suitable identity evaluate $(998)^{3}$.

उपयुक्त सर्वसमिका का प्रयोग करके $(998)^{3}$ का मान ज्ञात कीजिए।
19. In the given figure, lines AB and CD intersect at O . If $\angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ}$ and $\angle \mathrm{BOD}=40^{\circ}$, find $\angle \mathrm{BOE}$ and reflex $\angle \mathrm{EOC}$.

आकृति में रेखा AB तथा CD बिन्दु O पर प्रतिच्छेद करती है। यदि $\angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ}$ तथा $\angle \mathrm{BOD}=40^{\circ}$, तो $\angle \mathrm{BOE}$ और प्रतिवर्त कोण $\angle \mathrm{EOC}$ ज्ञात कीजिए।

OR

In the following figure, $\mathrm{PQ} \| \mathrm{ST}, \angle \mathrm{PQR}=115^{\circ}$ and $\angle \mathrm{RST}=130^{\circ}$.
Find the value of x.

नीचे दी आकृति में, $\mathrm{PQ} \| \mathrm{ST}, \angle \mathrm{PQR}=115^{\circ}$ तथा $\angle \mathrm{RST}=130^{\circ}$ है। x का मान
ज्ञात कीजिए।

20.

In the given figure, $A B C$ is a triangle with $B C$ produced to D. Also bisectors of $\angle A B C$ and $\angle \mathrm{ACD}$ meet at E . Show that $\angle \mathrm{BEC}=\frac{1}{2} \angle \mathrm{BAC}$.

दी हुई आकृति में $A B C$ एक त्रिभुज है जिसकी भुजा $B C$ बिन्दु D तक बढ़ाई गई है। $\angle A B C$ तथा $\angle A C D$ के समद्विभाजक E पर मिलते हैं। दर्शाइए कि $\angle \mathrm{BEC}=\frac{1}{2} \angle \mathrm{BAC}$
21.

In the given figure, sides $A B$ and $A C$ of $\triangle A B C$ are extended to points P and Q respectively. Also $\angle \mathrm{PBC}<\angle \mathrm{QCB}$. Show that $\mathrm{AC}>\mathrm{AB}$.

दी हुई आकृति में $\triangle A B C$ की भुजायें $A B$ तथा $A C$ क्रमशः बिन्दु, P तथा Q तक बढ़ाई गई है तथा $\angle P B C<\angle Q C B$. दर्शायें कि $A C>A B$.
22.

In the given figure, $A C=B C, \angle D C A=\angle E C B$ and $\angle D B C=\angle E A C$. Show that $\triangle \mathrm{DBC} \cong \triangle \mathrm{EAC}$ and hence $\mathrm{DC}=\mathrm{EC}$.

दी हुई आकृति में $\mathrm{AC}=\mathrm{BC}, \angle \mathrm{DCA}=\angle \mathrm{ECB}$ तथा $\angle \mathrm{DBC}=\angle \mathrm{EAC}$ है। दर्शाइए कि $\triangle \mathrm{DBC} \cong \triangle \mathrm{EAC}$ तथा $D C=E C$.
23. The degree measure of three angles of a triangle are x, y, and z. If $\mathrm{z}=\frac{x+y}{2}$ then find the value of z.

एक त्रिभुज के तीनों कोणों का माप x, y, तथा z है। यदि $\mathrm{z}=\frac{x+y}{2}$ है, तो z का मान ज्ञात कीजिए।
24. The perimeter of a triangular ground is 900 m and its sides are in the ratio $3: 5: 4$. Using Heron's formula, find the area of the ground.

एक तिकोनें मैदान का परिमाप 900 मी है। यदि इनकी भुजायें $3: 5: 4$ के अनुपात में हैं तो हीरोन का सूत्र प्रयोग करके इसका क्षेत्रफल ज्ञात कीजिये।

Section-D

Question numbers $\mathbf{2 5}$ to $\mathbf{3 4}$ carry four marks each.

25.

$$
\begin{aligned}
& \text { If } x=(2+\sqrt{5})^{1 / 2}+(2-\sqrt{5})^{1 / 2} \text { and } y=(2+\sqrt{5})^{1 / 2}-(2-\sqrt{5})^{1 / 2} \text { then evaluate } \\
& x^{2}+y^{2}
\end{aligned}
$$

यदि $x=(2+\sqrt{5})^{1 / 2}+(2-\sqrt{5})^{1 / 2}$ तथा $y=(2+\sqrt{5})^{1 / 2}-(2-\sqrt{5})^{1 / 2}$ है, तो $x^{2}+y^{2}$ का मान ज्ञात कीजिए।

OR

If $a=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ and $b=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, find the value of $a^{2}+b^{2}-5 a b$.

यदि $\mathrm{a}=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ तथा $\mathrm{b}=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ है, तो $\mathrm{a}^{2}+\mathrm{b}^{2}-5 \mathrm{ab}$ का मान ज्ञात कीजिए।
26. Rationalize the denominator of $\frac{4}{2+\sqrt{3}+\sqrt{7}}$ $\frac{4}{2+\sqrt{3}+\sqrt{7}}$ के हर का परिमेयीकरण कीजिए।
27. Factorize : (a) $4 a^{2}-9 b^{2}-2 a-3 b$.
(b) $a^{2}+b^{2}-2(a b-a c+b c)$

गुणनखंड कीजिए :
(a) $4 a^{2}-9 b^{2}-2 a-3 b$.
(b) $a^{2}+b^{2}-2(a b-a c+b c)$
28.

If $(x+5)$ is a factor of $x^{3}+2 x^{2}-13 x+10$, find the other factors.
यदि बहुपद $x^{3}+2 x^{2}-13 x+10$ का एक गुणनखण्ड $(x+5)$ हो, तो अन्य गुणनखण्ड ज्ञात कीजिए।
29. Factorize $a^{7}-a b^{6}$.
$a^{7}-a b^{6}$ के गुणनखंड कीजिए।

OR

If $a x^{3}+b x^{2}+x-6$ has $x+2$ as a factor and leaves remainder 4 when divided by $x-2$, find the values of a and b.

यदि $x+2$, बहुपद $a x^{3}+b x^{2}+x-6$ का एक गुणनखण्ड है और बहुपद को $(x-2)$ से विभाजित करने पर शेषफल 4 बचता है तो a तथा b के मान ज्ञात कीजिए।
30. In the given figure, PQR is an equilateral triangle with coordinates of Q and R as $(-2,0)$ and $(2,0)$ respectively. Find the coordinates of the vertex P.

नीचे दी गई आकृति में, PQR एक समबाहु त्रिभुज है। बिन्दु Q तथा R के निर्देशांक क्रमशः $(-2,0)$ तथा $(2,0)$ हैं। शीर्ष बिन्दु P के निर्देशांक ज्ञात कीजिए।

31. In the adjoining figure, the side $Q R$ of $\triangle P Q R$ is produced to a point S. If the bisectors of $\angle \mathrm{PQR}$ and $\angle \mathrm{PRS}$ meet at point T , then prove that $\angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$.

आकृति में, $\triangle \mathrm{PQR}$ की भुजा QR को बिन्दु S तक बढ़ाया गया है। यदि $\angle \mathrm{PQR}$ तथा $\angle \mathrm{PRS}$ के समद्विभाजक एक बिन्दु T पर मिलते हैं, तो सिद्ध कीजिए कि $\angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$.

32. In the following figure, the sides AB and AC of $\triangle \mathrm{ABC}$ are produced to D and E respectively. If the bisectors of $\angle \mathrm{CBD}$ and $\angle \mathrm{BCE}$ meet at O , then show that $\angle \mathrm{BOC}=90^{\circ}-\frac{\angle \mathrm{A}}{2}$.

नीचे दी आकृति में, $\triangle \mathrm{ABC}$ की भुजाओं AB और AC को क्रमशः D और E तक बढ़ाया गया है। यदि $\angle \mathrm{CBD}$ और $\angle \mathrm{BCE}$ के समद्विभाजक O पर मिलते हैं, तो सिद्ध कीजिए कि $\angle \mathrm{BOC}=90^{\circ}-\frac{\angle \mathrm{A}}{2}$ है।

33. BE and CF are two equal altitudes of a triangle ABC . Using RHS congruence rule, prove that the triangle $A B C$ is isosceles.
$\triangle \mathrm{ABC}$ में BE तथा CF दो समान शीर्ष लम्ब हैं। RHS सर्वांगसमता कसौटी की सहायता से सिद्ध कीजिए कि $\triangle \mathrm{ABC}$ एक समद्विबाहु त्रिभुज है।
34. In a triangle $A B C, A B=A C, E$ is the mid point of $A B$ and F is the mid point of $A C$. Show that $B F=C E$.

एक त्रिभुज ABC में, $\mathrm{AB}=\mathrm{AC}$ है। E भुजा AB का मध्य बिंदु तथा F भुजा AC का मध्य बिन्दु है। दर्शाइए कि $\mathrm{BF}=\mathrm{CE}$.

