SUMMATIVE ASSESSMENT –I (2011) संकलित परीक्षा –I MATHEMATICS / गणित Class – IX / कक्षा – IX

Time allowed: 3 hours निर्धारित समय : 3 घण्टे

Maximum Marks: 90 अधिकतम अंक : 90

General Instructions:

- (i) All questions are compulsory.
- (ii) The question paper consists of 34 questions divided into four sections A,B,C and D. Section A comprises of 8 questions of 1 mark each, section B comprises of 6 questions of 2 marks each, section C comprises of 10 questions of 3 marks each and section D comprises 10 questions of 4 marks each.
- (iii) Question numbers 1 to 8 in section-A are multiple choice questions where you are to select one correct option out of the given four.
- (iv) There is no overall choice. However, internal choice have been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculator is not permitted.

<u>सामान्य निर्देश :</u>

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) इस प्रश्न पत्र में 34 प्रश्न हैं, जिन्हें चार खण्डों अ, ब, स तथा द में बांटा गया है। खण्ड अ में 8 प्रश्न हैं जिनमें प्रत्येक 1 अंक का है, खण्ड – ब में 6 प्रश्न हैं जिनमें प्रत्येक के 2 अंक हैं, खण्ड – स में 10 प्रश्न हैं जिनमें प्रत्येक के 3 अंक है तथा खण्ड – द में 10 प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं।
- (iii) खण्ड अ में प्रश्न संख्या 1 से 8 तक बहुविकल्पीय प्रश्न हैं जहां आपको चार विकल्पों में से एक सही विकल्प चुनना है।
- (iv) इस प्रश्न पत्र में कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 2 अंकों के एक प्रश्न में, 3 अंकों के 3 प्रश्नों में और 4 अंकों के 2 प्रश्नों में दिए गए हैं। प्रत्येक प्रश्न में एक विकल्प का चयन करें।
- (v) कैलकुलेटर का प्रयोग वर्जित है।

Section-A

Question numbers 1 to 8 carry one mark each. For each question, four alternative choices have been provided of which only one is correct. You have to select the correct choice.

1. Two rational numbers between $\frac{2}{3}$ and $\frac{5}{3}$ are :

460017

- (A) $\frac{1}{6}$ and $\frac{2}{6}$ (B) $\frac{1}{2}$ and $\frac{2}{1}$
- (C) $\frac{5}{6}$ and $\frac{7}{6}$ (D) $\frac{2}{3}$ and $\frac{4}{3}$

 $\frac{2}{3}$ तथा $\frac{5}{3}$ के बीच दो परिमेय संख्याएँ हैं :

- (A) $\frac{1}{6}$ तथा $\frac{2}{6}$ (B) $\frac{1}{2}$ तथा $\frac{2}{1}$
- (C) $\frac{5}{6}$ तथा $\frac{7}{6}$ (D) $\frac{2}{3}$ तथा $\frac{4}{3}$
- 2. Which of the following is a trinomial in *x* ?
 - (A) $x^3 + 1$ (B) $x^3 + x^2 + x$
 - (C) $x\sqrt{x} + \sqrt{x} + 1$ (D) $x^3 + 2x$

निम्नलिखित में से कौन सी x में त्रिपदी है?

- (A) $x^3 + 1$ (B) $x^3 + x^2 + x$
- (C) $x\sqrt{x} + \sqrt{x} + 1$ (D) $x^3 + 2x$
- **3.** A cubic polynomial is a polynomial with degree :
 - (A) 1 **(B)** 3 (C)0 (D) 2 एकत्रिघात बहुपद वह बहुपद है जिस की घात है : : (A) 1 (C) **(B)** 3 0 (D) 2 The zeroes of the polynomial p(x) = (x-6) (x-5) are :
 - (A) -6, -5(B) -6, 5(C) 6, -5(D) 6, 5बहुपद p(x) = (x-6)(x-5) के शून्यक हैं :(A) -6, -5(B) -6, 5(C) 6, -5(D) 6, 5
- **5.** In the figure, AOB is a straight line. The measure of \angle COD is equal to :

4.

(C) 8 से.मी., 10 से.मी., 12 से.मी.

Section-B

Question numbers 9 to 14 carry two marks each.

9. Evaluate :
$$\left(\frac{81}{49}\right)^{-\frac{3}{2}}$$
मान ज्ञात कोजिए : $\left(\frac{81}{49}\right)^{-\frac{3}{2}}$

- **10.** Using factor theorem, prove that g (x) = $x^2 4$ is a factor of p(x) = $x^3 3x^2 4x + 12$. गुणनखंड प्रमेय का प्रयोग करते हुए, सिद्ध कीजिए कि g (x) = $x^2 - 4$, बहुपद p(x) = $x^3 - 3x^2 - 4x + 12$ का एक गुणनखंड हैं।
- Evaluate using a suitable identity ; (999)³.
 उपयुक्त सर्वसमिका का प्रयोग करके (999)³ का मान ज्ञात कीजिए।
- **12.** In figure, OP bisects \angle BOC and OQ bisects \angle AOC. Show that \angle POQ = 90°.

आकृति में, भुजा OP, ∠BOC का समद्विभाजक है तथा भुजा OQ , ∠AOC का समद्विभाजक है। दर्शाइए कि ∠POQ = 90° है।

perpendiculars to AB and AC respectively such that DE = DF. Prove that $\angle B = \angle C$.

दी गई आकृति में, आधार BC का मध्य बिन्दु D है तथा DE और DF क्रमश: AB और AC पर इस प्रकार लम्ब बनाते हैं कि DE = DF. सिद्ध कीजिए कि $\angle B = \angle C$.

OR An angle is equal to five times its complement. Find the measure of the angle.

एक कोण अपने पूरक कोण का पाँच गुना है। कोण का माप ज्ञात कीजिए।

14. Write the co-ordinates of A, B, C and D from the following figure :

निम्न आकृति में, दर्शाये गये बिन्दओं A, B, C तथा D के निर्देशांक ज्ञात कीजिये :

Section-C

Question numbers 15 to 24 carry three marks each.

15. Find the value of :

$$\frac{4}{(216)^{\frac{-2}{3}}} - \frac{1}{(256)^{\frac{-3}{4}}}$$

मान ज्ञात कीजिए :

$$\frac{4}{(216)^{\frac{-2}{3}}} - \frac{1}{(256)^{\frac{-3}{4}}}$$

OR

Simplify:
$$\left[5\left[8^{\frac{1}{3}}+27^{\frac{1}{3}}\right]^{3}\right]^{\frac{1}{4}}$$
.
सरल कोजिए: $\left[5\left[8^{\frac{1}{3}}+27^{\frac{1}{3}}\right]^{3}\right]^{\frac{1}{4}}$.

- **16.** Express $\frac{1}{1 + \sqrt{2} \sqrt{3}}$ with rational denominator. $\frac{1}{1 + \sqrt{2} - \sqrt{3}}$ and $\frac{1}{1 + \sqrt{3} - \sqrt{3$
- 17. Without finding the cubes, find the value of : $\left(\frac{1}{4}\right)^3 + \left(\frac{1}{3}\right)^3 \left(\frac{7}{12}\right)^3$

बिना घन ज्ञात किए, निम्न का मान ज्ञात कीजिए : $\left(\frac{1}{4}\right)^3 + \left(\frac{1}{3}\right)^3 - \left(\frac{7}{12}\right)^3$

Factorize : $3 - 27 (a - b)^2$.

 $3-27 (a-b)^2$ के गुणनखंड कीजिए।

18. If
$$\left(x + \frac{1}{x}\right) = 9$$
 then find the value of $x^3 + \frac{1}{x^3}$
 $\operatorname{val}\left(x + \frac{1}{x}\right) = 9$ el , $\operatorname{rd} x^3 + \frac{1}{x^3}$ en मान ज्ञात कीजिए।

19. In the figure below, AB = AC, DB = DC. Prove that $\angle ABD = \angle ACD$.

आकृति में AB = AC, DB = DC है। सिद्ध कीजिए कि $\angle ABD = \angle ACD$

OR

In the figure given below, if PQ||RS and \angle PXM = 50° and \angle MYS = 120°, find the value of *x*.

निम्न आकृति में, यदि $\mathrm{PQ}||\mathrm{RS}$ तथा $\angle\mathrm{PXM}\,{=}\,50^\circ$ तथा $\angle\mathrm{MYS}\,{=}\,120^\circ$ है, तो x का मान ज्ञात कीजिए।

20. In the given figure, POQ is a line. Ray OR \perp PQ, OS is another ray lying between rays OP and OR. Prove that $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS)$.

दी गयी आकृति में, POQ एक सरल रेखा है, किरण OR ⊥PQ, किरण OS किरण OP और OR के बीच में स्थित है।

सिद्ध कोजिए
$$\angle \text{ROS} = rac{1}{2} \left(\angle \text{QOS} - \angle \text{POS} \right)$$
 .

21. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$. Show that $\triangle DAP \cong \triangle EBP$.

AB एक रेखाखण्ड है तथा P इस का माध्य बिन्दु है। बिन्दु D तथा E भुजा AB की एक ही दिशा में इस प्रकार हैं कि \angle BAD = \angle ABE तथा \angle EPA = \angle DPB. दर्शाये कि \triangle DAP \cong \triangle EBP.

22.

ABC is an isosceles triangle with AB = AC. P and Q are points on AB and AC respectively such that AP = AQ. Prove that CP = BQ.

एक समद्विबाहु त्रिभुज ABC में AB = AC। AB तथा AC पर क्रमश: बिन्दु P तथा Q इस प्रकार हैं कि AP = AQ । सिद्ध कोजिए कि CP = BQ.

23. In figure, prove that AB||EF.

आकृति में, सिद्ध कीजिए कि AB||EF.

24. The sides of a triangular ground are 5m, 7m and 8m respectively. Find the cost of levelling the ground at the rate of Rs. 10 per m². (use $\sqrt{3}$ =1.73).

एक त्रिभुजाकार मैदान की भुजाएँ ऋमश: 5 मी, 7 मी तथा 8 मी है। इस मैदान को 10 रु. प्रति मी 2 की दर से समतल करने का व्यय ज्ञात कीजिए। ($\sqrt{3}$ =1.73)

Section-D

Question numbers 25 to 34 carry four marks each.

25. Rationalize the denominator of $\frac{4}{2 + \sqrt{3} + \sqrt{7}}$

 $\frac{4}{2+\sqrt{3}+\sqrt{7}}$ के हर का परिमेयीकरण कीजिए।

OR
If a = 7 - 4
$$\sqrt{3}$$
 , find the value of $\sqrt{a} + \frac{1}{\sqrt{a}}$

यदि
$$\mathbf{a} = \mathbf{7} - \mathbf{4} \sqrt{3}$$
 है, तो $\sqrt{a} + \frac{1}{\sqrt{a}}$ का मान ज्ञात कीजिए।

- 26. Express $2.3\overline{6} + 0.\overline{23}$ as a fraction in simplest form. $2.3\overline{6} + 0.\overline{23}$ को सरलतम भिन्न के रूप में व्यक्त कीजिए।
- ^{27.} Simplify : $(5a + 3b)^3 (5a 3b)^3$ सरल कीजिए : $(5a + 3b)^3 - (5a - 3b)^3$
- **29.** Factorise $a^7 + ab^6$.

गुणनखण्ड कोजिए $a^7 + ab^6$.

OR

Factorise : $3u^3 - 4u^2 - 12u + 16$ गुणनखण्ड कोजिए : $3u^3 - 4u^2 - 12u + 16$

30. (i) Plot the points A (0, 4), B (-3, 0), C (0, -4), D (3, 0)

- (ii) Name the figure obtained by joining the points A, B, C, D.
- (iii) Also, name the quadrants in which sides AB and AD lie.
- (i) कार्तीय निर्देशांक तल में बिन्दु A (0, 4), B (-3, 0), C (0, -4) और D (3, 0) को आलेखित कीजिए।
- (ii) A, B, C और D बिन्दुओं को मिलाने पर बनी आकृति ABCD को पहचान कर बताइये।
- (iii) भुजा AB और AD किन चतुर्थांशों में स्थित हैं?

31. The sides AB and AC of \triangle ABC are produced to points P and Q respectively. If bisectors of PBC and QCB intersect at O. Prove

that BOC = $90 - \frac{1}{2}$ A.

त्रिभुज ABC की भुजाओं AB तथा AC को बिन्दु P तथा Q तक बढ़ाया गया है। यदि PBC तथा QCB के समद्विभाजक बिन्दु O पर मिलते हैं, तो सिद्ध कीजिए BOC = $90 - \frac{1}{2}$ A.

32. ABCD is quadrilateral in which AB = BC and AD = CD. Show that BD bisects both the angles ABC and ADC.

ABCD एक चतुर्भुज है जिसमें AB=BC और AD=CD. दर्शाइए कि BD दोनों कोणों ABC तथा ADC का समद्रिभाजक है।

33. \triangle ABC is an isosceles triangle with AB = AC. Side BA is produced to D such that AB = AD. Prove that \angle BCD is a right angle.

त्रिभुज ABC एक समद्विबाहु त्रिभुज है, जिसमें AB = AC है। भुजा BA को बिन्दु D तक इस प्रकार बढ़ाया गया है कि AB = AD है। सिद्ध कीजिए कि ∠BCD एक समकोण है।

34. ABC is a triangle, in which altitudes BE and CF to sides AC and AB respectively are equal. Show that $\triangle ABE \cong \triangle ACF$. Also, show that $\triangle ABC$ is an isosceles triangle.

त्रिभुज ABC में शीर्षलम्ब BE तथा CF, जो क्रमशः भुजाओं AC तथा AB पर डाले गये हैं, समान है। दर्शाइए कि ∆ABC≅∆ACF. यह भी दर्शाइए कि ∆ABC एक समद्विबाहु त्रिभुज है :

