SUMMATIVE ASSESSMENT -I (2011) संकलित परीक्षा -।
 MATHEMATICS / गणित
 Class - IX / कक्षा - IX

Maximum Marks: 90
निर्धारित समय : 3 घण्टे
अधिकतम अंक : 90

General Instructions:

(i) All questions are compulsory.
(ii) The question paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 8 questions of 1 mark each, section B comprises of 6 questions of 2 marks each, section C comprises of 10 questions of 3 marks each and section D comprises 10 questions of 4 marks each.
(iii) Question numbers 1 to 8 in section-A are multiple choice questions where you are to select one correct option out of the given four.
(iv) There is no overall choice. However, internal choice have been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculator is not permitted.

सामान्य निर्देश :
(i) सभी प्रश्न अनिवार्य हैं।
(ii) इस प्रश्न पत्र में 34 प्रश्न हैं, जिन्हें चार खण्डों अ, ब, स तथा द में बांटा गया है। खण्ड - अ में 8 प्रश्न हैं जिनमें प्रत्येक 1 अंक का है, खण्ड - ब में 6 प्रश्न हैं जिनमें प्रत्येक के 2 अंक हैं, खण्ड - स में 10 प्रश्न हैं जिनमें प्रत्येक के 3 अंक है तथा खण्ड - द में 10 प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं।
(iii) खण्ड अ में प्रश्न संख्या 1 से 8 तक बहुविकल्पीय प्रश्न हैं जहां आपको चार विकल्पों में से एक सही विकल्प चुनना है।
(iv) इस प्रश्न पत्र में कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 2 अंकों के एक प्रश्न में, 3 अंकों के 3 प्रश्नों में और 4 अंकों के 2 प्रश्नों में दिए गए हैं। प्रत्येक प्रश्न में एक विकल्प का चयन करें।
(v) कैलकुलेटर का प्रयोग वर्जित है।

Section-A

Question numbers 1 to 8 carry one mark each. For each question, four alternative choices have been provided of which only one is correct. You have to select the correct choice.

1. Value of $\frac{1}{\sqrt{18}-\sqrt{32}}$ is equal to :
(A) $\sqrt{2}$
(B) $-\sqrt{2}$
(C) $\frac{1}{\sqrt{2}}$
(D) $-\frac{1}{\sqrt{2}}$
$\frac{1}{\sqrt{18}-\sqrt{32}}$ का मान है :
(A) $\sqrt{2}$
(B) $-\sqrt{2}$
(C) $\frac{1}{\sqrt{2}}$
(D) $-\frac{1}{\sqrt{2}}$
2. Zero of the polynomial $\mathrm{p}(x)=2 x+5$ is :
(A) $\frac{2}{5}$
(B) $-5 / 2$
(C) $-2 / 5$
(D) $\frac{5}{2}$

बहुपद $\mathrm{p}(x)=2 x+5$ का शून्यक है :
(A) $\frac{2}{5}$
(B) $-5 / 2$
(C) $-2 / 5$
(D) $\frac{5}{2}$
3. The remainder obtained when the polynomial $\mathrm{p}(x)$ is divided by $(\mathrm{b}-\mathrm{ax})$ is :
(A) $\mathrm{p}\left(\frac{-\mathrm{b}}{\mathrm{a}}\right)$
(B) $p\left(\frac{a}{b}\right)$
(C) $p\left(\frac{b}{a}\right)$
(D) $p\left(\frac{-a}{b}\right)$

जब बहुपद $\mathrm{p}(x)$ को $(\mathrm{b}-\mathrm{a} x)$ से भाग किया जाये तो शेषफल होगा :
(A) $p\left(\frac{-b}{a}\right)$
(B) $p\left(\frac{a}{b}\right)$
(C) $p\left(\frac{b}{a}\right)$
(D) $p\left(\frac{-a}{b}\right)$
4. The remainder when $x^{2}+2 x+1$ is divided by $(x+1)$ is
(A) 4
(B) 0
(C) 1
(D) -2

जब $x^{2}+2 x+1$ को $(x+1)$ से भाग दिया जाता है, तो शेषफल है :
(A) 4
(B) 0
(C) 1
(D) -2
5. If the angles of a triangle are in the ratio $5: 3: 7$, then the triangle is :
(A) an acute angled triangle
(B) an obtuse angled triangle
(C) a right triangle
(D) an isosceles triangle

यदि किसी त्रिभुज के कोण $5: 3: 7$ के अनुपात में है तो यह त्रिभुज है :
(A) एक न्यून कोण त्रिभुज
(B) एक अधिक कोण त्रिभुज
(C) एक समकोण त्रिभुज
(D) एक समद्विबाहु त्रिभुज
6. $\triangle \mathrm{ABC}$ is an isosceles right angled triangle in which $\angle \mathrm{A}=90^{\circ}$, then $\angle \mathrm{B}=$.
(A) 60°
(B) 90°
(C) 45°
(D) 30°
$\triangle \mathrm{ABC}$ एक समद्विबाहु त्रिभुज है जिसका कोण $\angle \mathrm{A}=90^{\circ}$, तो $\angle \mathrm{B}$ बराबर है :
(A) 60°
(B) 90°
(C) 45°
(D) 30°
7.

Two sides of a triangle are 13 cm and 14 cm and its semi perimeter is 18 cm . Then third side of the triangle is :
(A) 12 cm
(B) 11 cm
(C) 10 cm
(D) 9 cm

यदि दो त्रिभुज की दो भुजाएँ 13 से.मी., 14 से.मी. और परिमाप का आधा 18 से.मी. हो, तो तीसरी भुजा होगी :-
(A) 12 से.मी.
(B) 11 से.मी.
(C) 10 से.मी.
(D) 9 से.मी.
8.

The base of a right triangle is 15 cm and its hypotenuse is 25 cm . Then its area is :
(A) $187.5 \mathrm{~cm}^{2}$
(B) $375 \mathrm{~cm}^{2}$
(C) $150 \mathrm{~cm}^{2}$
(D) $300 \mathrm{~cm}^{2}$

एक समकोण त्रिभुज का आधार 15 से.मी. और कर्ण 25 से.मी. हो, तो इसका क्षेत्रउल होगा :-
(A) 187.5 से.मी. ${ }^{2}$
(B) 375 से.मी. ${ }^{2}$
(C) 150 से.मी. ${ }^{2}$
(D) 300 से.मी. ${ }^{2}$

Section-B

Question numbers 9 to 14 carry two marks each.
9.

Show that $\frac{x^{a(b-c)}}{x^{b(a-c)}} \div\left(\frac{x^{b}}{x^{a}}\right)^{c}=1$
दर्शाइये कि $\frac{x^{\mathrm{a}(\mathrm{b}-\mathrm{c})}}{x^{\mathrm{b}(\mathrm{a}-\mathrm{c})}} \div\left(\frac{x^{\mathrm{b}}}{x^{\mathrm{a}}}\right)^{\mathrm{c}}=1$
10.

Find if $(-2 x-5)$ is a factor of the polynomial $p(x)=3 x^{4}+5 x^{3}-2 x^{2}-4$ or not.
ज्ञात कीजिए कि $(-2 x-5)$ बहुपद $\mathrm{p}(x)=3 x^{4}+5 x^{3}-2 x^{2}-4$ का गुणनखण्ड है या नहीं।
11. Using a suitable identity and without multiplying directly, find the value of (0.99) $\times(1.01)$.

उपयुक्त सर्वसमिका का प्रयोग कर तथा बिना सीधे गुणा किये, $(0.99) \times(1.01)$ का गुणनफल ज्ञात कीजिए।
12. If a point Z lies on the line $X Y$ between two points X and Y such that $X Z=Y Z$, then prove that $X Z=\frac{1}{2} X Y$.

एक बिंदु Z दो बिन्दुओं X और Y के बीच रेखा $X Y$ पर इस प्रकार स्थित है कि $X Z=Y Z$ तो सिद्ध कीजिए कि $X Z=\frac{1}{2} X Y$.
13. In the figure below, $\triangle \mathrm{ABD}$ and $\triangle \mathrm{BCD}$ are isosceles triangles on the same base $B D$. Prove that $\angle \mathrm{ABC}=\angle \mathrm{ADC}$.

निम्न आकृति में, $\triangle \mathrm{ABD}$ तथा $\triangle \mathrm{BCD}$ दोनों समद्विबाहु त्रिभुज हैं जिनका एक ही आधार BD है। सिद्ध कीजिए कि $\angle \mathrm{ABC}=\angle \mathrm{ADC}$

OR

In the given figure, lines l and m intersect each others at O. If $x=40^{\circ}$ then, find
the value of y, z and w.

दी गई आकृति में, रेखाएँ l और m एक दूसरे को बिन्दु O पर प्रतिच्छेद करती है। यदि $x=40^{\circ}$ है, तो y, z तथा w के मान ज्ञात कीजिए।

14. In which quadrant do the following points lie ?
(A) $(-6,2)$
(B) $(-5,-4)$
(C) $(3,-2)$
(D) $(9,6)$

निम्नलिखित बिन्दु किस चतुर्थांश में स्थित है ?
(A) $(-6,2)$
(B) $(-5,-4)$
(C) $(3,-2)$
(D) $(9,6)$

Section-C

Question numbers $\mathbf{1 5}$ to $\mathbf{2 4}$ carry three marks each.

15. Represent $\sqrt{10}$ on the number line.
$\sqrt{10}$ को संख्या रेखा पर निरूपित कीजिए।

OR
Find the value of $\frac{4}{(216)^{\frac{-2}{3}}}-\frac{1}{(256)^{\frac{-3}{4}}}$.
$\frac{4}{(216)^{\frac{-2}{3}}}-\frac{1}{(256)^{\frac{-3}{4}}}$ का मान ज्ञात कीजिए।
16.

If $x=7+4 \sqrt{3}$, find the value of $\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)$.
यदि $x=7+4 \sqrt{3}$, तो $\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)$ का मान ज्ञात कीजिए।
17. Find the value of a if $(x+a)$ is a factor of $x^{4}-a^{2} x^{2}+3 x-a$.

यदि $(x+a)$ बहुपद $x^{4}-a^{2} x^{2}+3 x-a$ का गुणनखंड है, तो a का मान ज्ञात कीजिए।

OR

If $a+b=10$ and $a^{2}+b^{2}=58$, find the value of $a^{3}+b^{3}$.

यदि $a+b=10$ तथा $a^{2}+b^{2}=58$ है, तो $a^{3}+b^{3}$ का मान ज्ञात कीजिए।
18. Factorize : $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$.
$64 \mathrm{a}^{3}-27 \mathrm{~b}^{3}-144 \mathrm{a}^{2} \mathrm{~b}+108 \mathrm{ab}^{2}$ के गुणनखण्ड कीजिए।
19. In the figure given below, BO and CO are bisectors of $\angle \mathrm{DBC}$ and $\angle \mathrm{ECB}$ respectively. If $\angle \mathrm{BAC}=50^{\circ}$ and $\angle \mathrm{ABC}=60^{\circ}$ then find the measure of $\angle \mathrm{BOC}$.

आकृति में, BO तथा CO क्रमशः कोण $\angle \mathrm{DBC}$ and $\angle \mathrm{ECB}$ के समद्विभाजक है। यदि $\angle \mathrm{BAC}=50^{\circ}$ and $\angle \mathrm{ABC}=60^{\circ}$ हो तो $\angle \mathrm{BOC}$ की माप ज्ञात कीजिए।

OR

In the figure given below, $\mathrm{PQ} \| \mathrm{RS}$ and T is any point as shown in the figure, then show that $\angle \mathrm{PQT}+\angle \mathrm{QTS}+\angle \mathrm{RST}=360^{\circ}$.

आकृति में, $P Q \| R S$ तथा T चित्र में प्रदर्शित एक बिंदु है। सिद्ध कीजिए कि :
$\angle \mathrm{PQT}+\angle \mathrm{QTS}+\angle \mathrm{RST}=360^{\circ}$.

20. Find the angles of a triangle $P Q R$ if $\angle P-\angle Q=45^{\circ}$ and $\angle Q-\angle R=30^{\circ}$.
$\triangle \mathrm{PQR}$ के कोणों का मान ज्ञात कीजिये यदि $\angle \mathrm{P}-\angle \mathrm{Q}=45^{\circ}$ और $\angle \mathrm{Q}-\angle \mathrm{R}=30^{\circ}$ है।
21. In the figure given below, ABCD is a quadrilateral in which diagonal $A C$ bisects $\angle \mathrm{A}$ and $\angle \mathrm{C}$, prove that $\triangle \mathrm{ABC} \cong \triangle \mathrm{ADC}$.

नीचे दी आकृति में, ABCD एक चतुर्भुज है जिसका विकर्ण AC कोणों $\angle \mathrm{A}$ और
$\angle \mathrm{C}$ को समद्विभाजित करता है। सिद्ध कीजिए कि $\triangle \mathrm{ABC} \cong \triangle \mathrm{ADC}$ है।

22. In the following figure, O is the mid-point of AB and CD . Prove that $B D=A C$.

नीचे दी आकृति में, O रेखाखंडों AB और CD का मध्य-बिंदु है। सिद्ध कीजिए कि $\mathrm{BD}=\mathrm{AC}$ है।

23. In the figure given below, if $A B \| C D, ' P$ ' is the mid-point of $B D$.

Prove that P is also the mid-point of AC .

नीचे दी आकृति में, यदि $\mathrm{AB} \| \mathrm{CD}$ है तथा BD का मध्य बिंदु ' P^{\prime} है, तो सिद्ध कीजिए कि P रेखाखंड AC का भी मध्य बिंदु है।

24.

Find the area of a triangle, whose sides are $26 \mathrm{~cm}, 28 \mathrm{~cm}$ and 30 cm respectively. एक त्रिभुज की भुजाएं क्रमशः $26 \mathrm{~cm}, 28 \mathrm{~cm}$ तथा 30 cm हैं। इसका क्षेत्रफल ज्ञात कीजिए।

Section-D

Question numbers $\mathbf{2 5}$ to $\mathbf{3 4}$ carry four marks each.

25.

If $a=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ and $b=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$, find the value of $a^{2}+b^{2}-5 a b$.
यदि $a=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$ तथा $b=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ है, तो $a^{2}+b^{2}-5 a b$ का मान ज्ञात कीजिए।

OR

If $x=(2+\sqrt{5})^{1 / 2}+(2-\sqrt{5})^{1 / 2}$ and $y=(2+\sqrt{5})^{1 / 2}-(2-\sqrt{5})^{1 / 2}$, then evaluate $x^{2}+y^{2}$.

यदि $x=(2+\sqrt{5})^{1 / 2}+(2-\sqrt{5})^{1 / 2}$ तथा $y=(2+\sqrt{5})^{1 / 2}-(2-\sqrt{5})^{1 / 2}$, तो $x^{2}+y^{2}$ का मान ज्ञात कीजिए।
26.

If $a=7-4 \sqrt{3}$, find the value of $\sqrt{a}+\frac{1}{\sqrt{a}}$
यदि $a=7-4 \sqrt{3}$ है, तो $\sqrt{a}+\frac{1}{\sqrt{a}}$ का मान ज्ञात कीजिए।
27.

Prove that $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$
सिद्ध कीजिए कि $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$
28. Find if remainder obtained on dividing polynomial $\mathrm{p}(y)=y^{3}+\mathrm{a} y^{2}+5 y-25$ by $(y+a)$ is a factor of polynomial $f(a)=a^{2}-5 a+25$.

क्या बहुपद $\mathrm{p}(y)=y^{3}+\mathrm{a} y^{2}+5 y-25$ को $(y+\mathrm{a})$ से विभाजित करने पर प्राप्त शेषफल, बहुपद $f(a)=a^{2}-5 a+25$ का गुणनखण्ड होगा ?
29. Determine whether $(3 x-2)$ is a factor of $3 x^{3}+x^{2}-20 x+12$? ज्ञात कीजिए कि क्या $(3 x-2)$ बहुपद $3 x^{3}+x^{2}-20 x+12$ का एक गुणनखंड है ?

OR

Factorise : $2 x^{3}+7 x^{2}-3 x-18$.
गुणनखण्ड कीजिए : $2 x^{3}+7 x^{2}-3 x-18$.
30. Observe the points plotted in the figure and find the following :
(i) The co-ordinates of E
(ii) The point with the co-ordinates $(-4,-1)$
(iii) The abscissa of A - abscissa of B
(iv) The ordinate of $\mathrm{C}+$ ordinate of F .

दी हुई आकृति को देखिए और निम्नलिखित के उत्तर दीजिए :
(i) बिन्दु E के निर्देशांक
(ii) बिन्दु जिसक निर्देशांक $(-4,-1)$ है
(iii) A का भुज -B का भुज
(iv) C को कोटि +F को कोटि

31. In given figure, the side QR of $\triangle \mathrm{PQR}$ is produced to a point S . If the bisectors of $\angle \mathrm{PQR}$ and $\angle \mathrm{PRS}$ meet at point T , then prove that $\angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$.

दी गई आकृति में, $\triangle \mathrm{PQR}$ की भुजा QR को बिन्दु S तक बढ़ाया गया है। यदि $\angle \mathrm{PQR}$ और $\angle \mathrm{PRS}$ के समद्विभाजक बिंदु T पर मिलते है, तो सिद्ध कीजिए कि $\angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$.

32. In the given figure, $\mathrm{PR}>\mathrm{PQ}$ and PS bisects $\angle \mathrm{QPR}$, prove that $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$.

दी गयी आकृति में, $\mathrm{PR}>\mathrm{PQ}$ और $\mathrm{PS} \angle \mathrm{QPR}$ का समद्विभाजक है। सिद्ध कीजिए कि $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$ ।

33.

If the bisector of the vertical angle of a triangle bisects the base of
the triangle, then prove that the triangle is isosceles.
यदि किसी त्रिभुज में शीर्ष बिन्दु पर बने कोण का समद्विभाजक सम्मुख भुजा को समद्विभाजित करता है, तो सिद्ध कीजिए कि त्रिभुज समद्विबाहु है।
34. Prove that medians of an equilateral triangle are equal.

सिद्ध कीजिए कि एक समबाहु त्रिभुज की माध्यिकाएँ समान होती हैं।

