SUMMATIVE ASSESSMENT -I (2011) संकलित परीक्षा -।
 MATHEMATICS / गणित
 Class - IX / कक्षा - IX

Maximum Marks: 90
निर्धारित समय : 3 घण्टे
अधिकतम अंक : 90

General Instructions:

(i) All questions are compulsory.
(ii) The question paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 8 questions of 1 mark each, section B comprises of 6 questions of 2 marks each, section C comprises of 10 questions of 3 marks each and section D comprises 10 questions of 4 marks each.
(iii) Question numbers 1 to 8 in section-A are multiple choice questions where you are to select one correct option out of the given four.
(iv) There is no overall choice. However, internal choice have been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculator is not permitted.

सामान्य निर्देश :
(i) सभी प्रश्न अनिवार्य हैं।
(ii) इस प्रश्न पत्र में 34 प्रश्न हैं, जिन्हें चार खण्डों अ, ब, स तथा द में बांटा गया है। खण्ड - अ में 8 प्रश्न हैं जिनमें प्रत्येक 1 अंक का है, खण्ड - ब में 6 प्रश्न हैं जिनमें प्रत्येक के 2 अंक हैं, खण्ड - स में 10 प्रश्न हैं जिनमें प्रत्येक के 3 अंक है तथा खण्ड - द में 10 प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं।
(iii) खण्ड अ में प्रश्न संख्या 1 से 8 तक बहुविकल्पीय प्रश्न हैं जहां आपको चार विकल्पों में से एक सही विकल्प चुनना है।
(iv) इस प्रश्न पत्र में कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 2 अंकों के एक प्रश्न में, 3 अंकों के 3 प्रश्नों में और 4 अंकों के 2 प्रश्नों में दिए गए हैं। प्रत्येक प्रश्न में एक विकल्प का चयन करें।
(v) कैलकुलेटर का प्रयोग वर्जित है।

Section-A

Question numbers 1 to 8 carry one mark each. For each question, four alternative choices have been provided of which only one is correct. You have to select the correct choice.
1.

A terminating decimal is :
(A) Natural number
(B) A whole number
(C) A rational number
(D) An integer

एक सांत दशमलव है :
(A) प्राकृत संख्या
(B) पूर्ण संख्या
(C) परिमेय संख्या
(D) एक पूर्णांक
2. If 2 is a zero of the polynomial $2 x^{2}+k x-14$, then the value of ' k ' is :
(A) -3
(B) 3
(C) 2
(D) 11

यदि बहुपद $2 x^{2}+k x-14$, का एक शून्यक 2 है, तो ' k ' का मान है :
(A) -3
(B) 3
(C) 2
(D) 11
3. When the polynomial $x^{6}-2 x^{5}+3 x^{2}+4$ is divided by $x+1$ the remainder is :
(A) 6
(B) 10
(C) 3
(D) 5

जब बहुपद $x^{6}-2 x^{5}+3 x^{2}+4$ को $x+1$ से भाग दिया जाता है तो शेष अता है :
(A) 6
(B) 10
(C) 3
(D) 5
4.

If $\mathrm{p}(x)=3 x-7$ then $\mathrm{p}(x)+\mathrm{p}(-x)$ is :
(A) 7
(B) $6 x$
(C) 0
(D) $\quad-14$

यदि $\mathrm{p}(x)=3 x-7$ हो, तो $\mathrm{p}(x)+\mathrm{p}(-x)$ का मान है :
(A) 7
(B) $6 x$
(C) 0
(D) $\quad-14$
5. In fig. the value of angle q is :

(A) 60°
(B) 90°
(C) 50°
(D) 40°

आकृति में कोण q का मान है :

(A) 60°
(B) 90°
(C) 50°
(D) 40°
6. In $\triangle \mathrm{PQR}, \mathrm{PE}$ is perpendicular bisector of $\angle \mathrm{QPR}$, then :
(A) $\quad \mathrm{QE}=\mathrm{PE}$
(B) $\mathrm{QP}>\mathrm{QE}$
(C) $\quad P Q=P R$
(D) $\quad \mathrm{PQ}>\mathrm{PR}$
$\triangle \mathrm{PQR}$ में $\angle \mathrm{QPR}$ का लम्ब समद्विभाजक PE है, तो :
(A) $\quad \mathrm{QE}=\mathrm{PE}$
(B) $\quad \mathrm{QP}>\mathrm{QE}$
(C) $\quad P Q=P R$
(D) $\quad \mathrm{PQ}>\mathrm{PR}$
7.

In figure, $\operatorname{ar}(\| g m \mathrm{ABCD})$ is :

(A) 10 cm
(B) 20 cm
(C) $10 \sqrt{3} \mathrm{~cm}^{2}$
(D) $20 \sqrt{3} \mathrm{~cm}^{2}$

आकृति में समांतर चतुर्भुज ABCD का क्षेत्रफल है :

(A) 10 cm
(B) 20 cm
(C) $10 \sqrt{3} \mathrm{~cm}^{2}$
(D) $20 \sqrt{3} \mathrm{~cm}^{2}$
8. The difference of semi-perimeter and the sides of $\triangle \mathrm{ABC}$ are $8 \mathrm{~cm}, 7 \mathrm{~cm}$ and 5 cm respectively. Its semi perimeter is :
(A) 10 cm
(B) 5 cm
(C) 15 cm
(D) 20 cm

किसी त्रिभुज $A B C$ के अर्धपरिमाप और भुजाओं के अंतर क्रमशः $8 \mathrm{~cm}, 7 \mathrm{~cm}$, और 5 cm । उसका अधपरिमाप है।
(A) 10 cm
(B) 5 cm
(C) 15 cm
(D) 20 cm

Section-B

Question numbers 9 to 14 carry two marks each.

9. Find three rational numbers between $\frac{3}{5}$ and $\frac{7}{8}$
$\frac{3}{5}$ और $\frac{7}{8}$ के बीच तीन परिमेय संख्याएँ ज्ञात कीजिए।
10. Factorise : $\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ba}+2 \mathrm{bc}-2 \mathrm{ca}$

गुणनखण्ड कीजिए : $\mathrm{a}^{2}+\mathrm{b}^{2}-2 \mathrm{ba}+2 \mathrm{bc}-2 \mathrm{ca}$
11. Evaluate $185 \times 185-15 \times 15$ by using suitable identity.

उपयुक्त सर्वसमिका का उपयोग करके $185 \times 185-15 \times 15$ का मान ज्ञात कीजिए।
12. If a point C lies between two points A and B such that $A C=B C$, then prove that $A C=\frac{1}{2} A B$. Explain by drawing the figure.

यदि दो बिन्दुओं A और B के बीच एक बिन्दु C ऐसा स्थित है कि $A C=B C$ है, तो सिद्ध कीजिए कि $A C=\frac{1}{2} A B$, आकृति खींचकर इसे स्पष्ट कीजिए।
13. In a right triangle show that the hypotenuse is the longest side.

एक समकोण त्रिभुज में दर्शाइए कि कर्ण सबसे बड़ी भुजा होती है।

OR
In the figure, $O A=O B$ and $O D=O C$. Show that
(i) $\triangle \mathrm{AOD} \cong \triangle B O C$
(ii) $A D \| B C$

निम्न आकृति में, $O A=O B$ तथा $O D=O C$ है, तो दर्शाइए कि :
(i) $\triangle A O D \cong \triangle B O C$
(ii) $A D \| B C$

14. In figure, if ABC and ABD are equilateral triangles then find the co-ordinates of C and D .

आकृति में, यदि $\triangle \mathrm{ABC}$ तथा $\triangle \mathrm{ABD}$ समबाहु त्रिभुज हों तो बिन्दुओं C तथा D के निर्देशांक ज्ञात कीजिए।

Section-C

Question numbers 15 to $\mathbf{2 4}$ carry three marks each.
15.

Simplify : $\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}+\frac{3 \sqrt{2}}{\sqrt{6}+\sqrt{3}}-\frac{4 \sqrt{3}}{\sqrt{6}+\sqrt{2}}$
सरल कीजिये : $\frac{\sqrt{6}}{\sqrt{2}+\sqrt{3}}+\frac{3 \sqrt{2}}{\sqrt{6}+\sqrt{3}}-\frac{4 \sqrt{3}}{\sqrt{6}+\sqrt{2}}$

OR

Rationalise the denominator and hence find the value if $\sqrt{5}=2.236$ and $\sqrt{3}=1.732$.
$\frac{6}{\sqrt{5}+\sqrt{3}}$ $\frac{6}{\sqrt{5}+\sqrt{3}}$ के हर का परिमेयीकरण कीजिए और फिर इसका मान ज्ञात कीजिए, यदि $\sqrt{5}=2.236$ और $\sqrt{3}=1.732$ है।
16. Represent $\sqrt{5}$ on the number line.
$\sqrt{5}$ को संख्या रेखा पर निरूपित कीजिए।
17. Expand the following.
(i) $(2 x-y+z)^{2}$
(ii) $(x-\sqrt{5})^{2}$

निम्नलिखित को प्रसारित रूप में लिखिए :
(i) $(2 x-y+z)^{2}$
(ii) $\quad(x-\sqrt{5})^{2}$

OR
Factorize : $(x+y)^{3}-x-y$
गुणनखण्ड कीजिए : $(x+y)^{3}-x-y$
18. Simplify : $\left(x-\frac{2}{3} y\right)^{3}-\left(x+\frac{2}{3} y\right)^{3}$

सरल कीजिए : $\left(x-\frac{2}{3} y\right)^{3}-\left(x+\frac{2}{3} y\right)^{3}$
19.

In figure $\mathrm{AB} \| \mathrm{CD}$ and $\mathrm{EF} \| \mathrm{DQ} \angle \mathrm{PDC}=34^{\circ}$, and $\angle \mathrm{FEB}=74^{\circ}$. Determine $\angle \mathrm{PDQ}, \angle \mathrm{AED}$ and \angle DEF. Give reasons to support your answer.

आकृति में $\mathrm{AB} \| \mathrm{CD}$ तथा $\mathrm{EF} \| \mathrm{DQ}, \angle \mathrm{PDC}=34^{\circ}$ तथा $\angle \mathrm{FEB}=74^{\circ}$ ज्ञात कीजिए : $\angle \mathrm{PDQ}, \angle \mathrm{AED}$ तथा $\angle \mathrm{DEF}$, अपने उत्तर को सत्यापित करने के लिये कारण भी दोजिए।

OR

In the given figure $A B \| C D$ and P is any point. Prove that $\angle A B P+\angle B P D+\angle C D P=360^{\circ}$.

दी गई आकृति में, $\mathrm{AB} \| \mathrm{CD}$ तथा P कोई बिन्दु है। सिद्ध कीजिए कि $\angle \mathrm{ABP}+\angle \mathrm{BPD}+\angle \mathrm{CDP}=360^{\circ}$.

20. In figure, if $\mathrm{AB} \| \mathrm{CD}, \mathrm{EF} \perp \mathrm{CD}$ and $\angle \mathrm{GED}=126^{\circ}$ then find $\angle \mathrm{AGE}, \angle \mathrm{GEF}$ and $\angle \mathrm{FGE}$.

आकृति में, यदि $\mathrm{AB} \| \mathrm{CD}, \mathrm{EF} \perp \mathrm{CD}$ तथा $\angle \mathrm{GED}=126^{\circ}$ हो, तो $\angle \mathrm{AGE}, \angle \mathrm{GEF}$ तथा $\angle \mathrm{FGE}$ के मान ज्ञात कीजिए।

21.

In figure, $\angle \mathrm{BAC}=85^{\circ}, \mathrm{CA}=\mathrm{CB}$ and $\mathrm{BD}=\mathrm{CD}$. Find the measure of $\angle x, \angle y$ and $\angle z$. Give reasons to support your answer.

आकृति में $\angle \mathrm{BAC}=85^{\circ}, \mathrm{CA}=\mathrm{CB}$ तथा $\mathrm{BD}=\mathrm{CD} . \angle x, \angle y$ तथा $\angle z$ का माप ज्ञात कीजिए तथा उत्तर को सत्यापित करने के लिए कारण भी लिखे।
22. $\triangle A B C$ is isosceles triangles in which $A B=A C, P$ and Q are points on $A B$ and $A C$ such that $\mathrm{AP}=\mathrm{AQ}$. Prove that $\angle \mathrm{ABQ}=\angle \mathrm{ACP}$.

समद्विबाहु $\triangle A B C$ में $A B=A C$ है। भुजा $A B$ तथा $A C$ पर P तथा Q बिन्दु इस प्रकार हैं कि $A P=A Q$ सिद्ध कीजिए कि $\angle \mathrm{ABQ}=\angle \mathrm{ACP}$.
23. In the figure given below, $A B \| C D$ and $C D \| E F$. Also $E A \perp A B$. If $\angle B E F=55^{\circ}$, find the values of x, y and z.

निम्न आकृति में, $\mathrm{AB} \| \mathrm{CD}$ तथा $\mathrm{CD} \| \mathrm{EF}$ है। $\mathrm{EA} \perp \mathrm{AB}$ है। यदि $\angle \mathrm{BEF}=55^{\circ}$ है, तो x, y तथा z के मान ज्ञात

कीजिए।

24. The sides of a triangular plot are in the ratio $3: 5: 7$ and its perimeter is 300 m . Find its area.

एक त्रिभुजाकार प्लाट की भुजायें $3: 5: 7$ के अनुपात में हैं तथा इस प्लाट का परिमाप 300 मी. है। क्षेत्रफल ज्ञात कीजिए।

Section-D

Question numbers $\mathbf{2 5}$ to $\mathbf{3 4}$ carry four marks each.

25.

Simplify : $\left[\frac{81}{36}\right]^{-3 / 4} \times\left[\left[\frac{25}{9}\right]^{-3 / 2} \div\left[\frac{5}{2}\right]^{-3}\right]$

सरल कीजिए :

$$
\left[\frac{81}{36}\right]^{-3 / 4} \times\left[\left[\frac{25}{9}\right]^{-3 / 2} \div\left[\frac{5}{2}\right]^{-3}\right]
$$

OR

Simplify : $\left(\frac{4+\sqrt{5}}{4-\sqrt{5}}+\frac{4-\sqrt{5}}{4+\sqrt{5}}\right)$
सरल कीजिए : $\left(\frac{4+\sqrt{5}}{4-\sqrt{5}}+\frac{4-\sqrt{5}}{4+\sqrt{5}}\right)$
26. Visualise the representation of $4 . \overline{67}$ on the number line upto 4 -decimal places.

उत्तरोतर आवर्धन का उपयोग करके, संख्या रेखा पर $4 . \overline{67}$ को दशमलव के चार स्थान तक दर्शाइए।
27. The polynomials a $x^{3}+3 x^{2}-3$ and $2 x^{3}-5 x+$ a when divided by $x-4$ leaves the remainders p and q respectively, find the value of a if $2 p=q$.

बहुपद $\mathrm{a} x^{3}+3 x^{2}-3$ तथा $2 x^{3}-5 x+\mathrm{a}$ को $x-4$ से विभाजित तो शेष p तथा q क्रमशः आता है। a का मान ज्ञात

कीजिए यदि $2 p=q$.
28. Find the value of $\frac{1}{27} r^{3}-s^{3}+125 t^{3}+5 r s t$ when $s=\frac{r}{3}+5 t$

यदि $s=\frac{r}{3}+5 t$, तो $\frac{1}{27} r^{3}-s^{3}+125 t^{3}+5 r s t$ का मान ज्ञात कीजिए।
29. If $x=2 y+6$, find the value of $x^{3}-8 y^{3}-36 x y-216$

यदि $x=2 y+6$ है, तो $x^{3}-8 y^{3}-36 x y-216$ का मान ज्ञात कीजिए।

OR

Find a and b such that $(x+2)$ and $(x-2)$ are factors of the polynomial $\mathrm{a} x^{4}+2 x^{3}-3 x^{2}+\mathrm{b} x-4$ यदि $(x+2)$ तथा $(x-2)$ बहुपद $a x^{4}+2 x^{3}-3 x^{2}+\mathrm{b} x-4$ के गुणनखण्ड हों, तो a तथा b क मान ज्ञात कीजिए।
30. Plot the following points, join them and identity the figure thus obtained :
$P(-1,0), Q(2,0), R(2,3)$ and $S(-1,5)$
निम्नलिखित बिन्दुओं को कार्तीय तल में आलेखित कीजिए और बिन्दुओं को मिलाने पर बनी आकृति को पहचानिए :
$\mathrm{P}(-1,0), \mathrm{Q}(2,0), \mathrm{R}(2,3)$ और $\mathrm{S}(-1,5)$
31. In the given figure, if $\mathrm{PQ} \perp \mathrm{PS}, \mathrm{PQ} \| \mathrm{SR}, \angle \mathrm{SQR}=28^{\circ}$ and $\angle \mathrm{QRT}=65^{\circ}$ then find the values of x and y.

दी गई आकृति में, यदि $\mathrm{PQ} \perp \mathrm{PS}, \mathrm{PQ} \| \mathrm{SR}, \angle \mathrm{SQR}=28^{\circ}$ तथा $\angle \mathrm{QRT}=65^{\circ}$ है तो x तथा y के मान ज्ञात कीजिए।

32. In figure below, D is a point on side $B C$ of $\triangle A B C$ such that $A D=A C$. Show that $\mathrm{AB}>\mathrm{AD}$.

आकृति में, $\triangle \mathrm{ABC}$ की भुजा BC पर बिन्दु D इस प्रकार स्थित है कि $\mathrm{AD}=\mathrm{AC}$ है। सिद्ध कीजिए कि $\mathrm{AB}>$ AD है।

33.
$A B C D$ is a quadrilateral with diagonals $A C$ and $B D$ meeting each other at O. Show that $A C+B D>\frac{1}{2}(A B+B C+C D+D A)$.

एक चतुर्भुज $A B C D$ के विकर्ण $A C$ तथा $B D$ बिन्दु O पर मिलते हैं। दर्शाइए कि $\mathrm{AC}+\mathrm{BD}>\frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA})$
34. Q is a point on side $S R$ of $\triangle P S R$ as shown in the figure below such that $P Q=P R$. Show that $P S>P Q$.

$\Delta \mathrm{PSR}$ की भुजा SR पर स्थित बिंदु Q कोइ इस प्रकार है कि $\mathrm{PQ}=\mathrm{PR}$ है, जैसा कि आकृति में दर्शाया गया है। दर्शाइए कि $\mathrm{PS}>\mathrm{PQ}$ है।

