SUMMATIVE ASSESSMENT -I (2011) संकलित परीक्षा -।
 MATHEMATICS / गणित
 Class - IX / कक्षा - IX

Maximum Marks: 90
निर्धारित समय : 3 घण्टे
अधिकतम अंक : 90

General Instructions:

(i) All questions are compulsory.
(ii) The question paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 8 questions of 1 mark each, section B comprises of 6 questions of 2 marks each, section C comprises of 10 questions of 3 marks each and section D comprises 10 questions of 4 marks each.
(iii) Question numbers 1 to 8 in section-A are multiple choice questions where you are to select one correct option out of the given four.
(iv) There is no overall choice. However, internal choice have been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculator is not permitted.

सामान्य निर्देश :
(i) सभी प्रश्न अनिवार्य हैं।
(ii) इस प्रश्न पत्र में 34 प्रश्न हैं, जिन्हें चार खण्डों अ, ब, स तथा द में बांटा गया है। खण्ड - अ में 8 प्रश्न हैं जिनमें प्रत्येक 1 अंक का है, खण्ड - ब में 6 प्रश्न हैं जिनमें प्रत्येक के 2 अंक हैं, खण्ड - स में 10 प्रश्न हैं जिनमें प्रत्येक के 3 अंक है तथा खण्ड - द में 10 प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं।
(iii) खण्ड अ में प्रश्न संख्या 1 से 8 तक बहुविकल्पीय प्रश्न हैं जहां आपको चार विकल्पों में से एक सही विकल्प चुनना है।
(iv) इस प्रश्न पत्र में कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 2 अंकों के एक प्रश्न में, 3 अंकों के 3 प्रश्नों में और 4 अंकों के 2 प्रश्नों में दिए गए हैं। प्रत्येक प्रश्न में एक विकल्प का चयन करें।
(v) कैलकुलेटर का प्रयोग वर्जित है।

Section-A

Question numbers 1 to 8 carry one mark each. For each question, four alternative choices have been provided of which only one is correct. You have to select the correct choice.
1.

The value of $(243)^{1 / 5}$ is equal to :
(A) 5
(B) 3
(C) 6
(D) 1
$(243)^{1 / 5}$ का मान है :
(A) 5
(B) 3
(C) 6
(D) 1
2. The degree of polynomial $5-x^{3}-2 x^{4}+3 x^{9}$ is
(A) $\quad-9$
(B) 9
(C) 3
(D) 0

बहुपद $5-x^{3}-2 x^{4}+3 x^{9}$ की घात है :
(A) $\quad-9$
(B) 9
(C) 3
(D) 0
3. The degree of a zero polynomial is :
(A) 1
(B) 0
(C) any natural number
(D) not defined

शून्य बहुपद की घात है :
(A) 1
(B) 0
(C) कोई प्राकृत संख्या
(D) परिभाषित नहीं।
4. One of the factors of $42+y-y^{2}$ is :
(A) $(7+y)$
(B) $(6-y)$
(C) $(7-y)$
(D) $(-6+y)$

बहुपद $42+y-y^{2}$ का एक गुणनखण्ड है :
(A) $(7+y)$
(B) $(6-y)$
(C) $(7-y)$
(D) $(-6+y)$
5. The angle which is one fifth of its complement is :
(A) 15°
(B) 30°
(C) 45°
(D) 60°

वह कोण जो अपने पूरक कोण का $1 / 5$ है, है :
(A) 15°
(B) 30°
(C) 45°
(D) 60°
6. If D is a point on the side BC of $\triangle \mathrm{ABC}$ such that AD bisect $\angle \mathrm{BAC}$, then :
(A) $\mathrm{BD}=\mathrm{DC}$
(B) $\mathrm{AB}>\mathrm{BD}$
(C) $\mathrm{BD}>\mathrm{AB}$
(D) $\mathrm{DC}>\mathrm{AC}$
$\triangle \mathrm{ABC}$ की भुजा BC पर बिन्दु D इस प्रकार है कि $\angle \mathrm{BAC}$ का समद्विभाजक AD है , तो :
(A) $\mathrm{BD}=\mathrm{DC}$
(B) $\quad \mathrm{AB}>\mathrm{BD}$
(C) $\mathrm{BD}>\mathrm{AB}$
(D) $\quad \mathrm{DC}>\mathrm{AC}$
7. The perimeter of an equilateral triangle is 60 cm . Its area (in cm^{2}) is :
(A) $10 \sqrt{3}$
(B) $100 \sqrt{3}$
(C) $15 \sqrt{3}$
(D) $20 \sqrt{3}$ एक समबाहु त्रिभुज का परिमाप 60 cm है। इस त्रिभुज का $\left(\mathrm{cm}^{2}\right.$ में) क्षेत्रफल है
(A) $10 \sqrt{3}$
(B) $100 \sqrt{3}$
(C) $15 \sqrt{3}$
(D) $20 \sqrt{3}$
8.

Area of an isosceles right triangle is $8 \mathrm{~cm}^{2}$. Its hypotenuse is:
(A) $\sqrt{32} \mathrm{~cm}$
(B) 4 cm
(C) $4 \sqrt{3} \mathrm{~cm}$
(D) $2 \sqrt{6} \mathrm{~cm}$

किसी समद्विबाहु समकोण त्रिभुज का क्षेत्रफल $8 \mathrm{~cm}^{2}$ है। इसका कर्ण है
(A) $\sqrt{32} \mathrm{~cm}$
(B) 4 cm
(C) $4 \sqrt{3} \mathrm{~cm}$
(D) $2 \sqrt{6} \mathrm{~cm}$

Section-B

Question numbers 9 to 14 carry two marks each.

9.

Evaluate : $\left(-\frac{1}{27}\right)^{-\frac{2}{3}}$
हल कीजिए : $\left(-\frac{1}{27}\right)^{-\frac{2}{3}}$
10. Factorize : $\left(x^{2}-1-2 \mathrm{a}-\mathrm{a}^{2}\right)$

गुणनखण्ड कीजिए : $\left(x^{2}-1-2 \mathrm{a}-\mathrm{a}^{2}\right)$
11. Evaluates 103×107 without multiplying directly :

वास्तविक गुणन किए बिना 103×107 का मान ज्ञात कीजिए।
12. In the given figure, if $\boldsymbol{x}+\boldsymbol{y}=\boldsymbol{w}+\boldsymbol{z}$, then prove that $A O B$ is a line.

दी गई आकृति में, यदि $x+y=w+z$ है, तो सिद्ध कीजिए कि AOB एक रेखा है।

13. In the given figure, $A B>A C$ and $B O$ and $C O$ are the bisectors of $\angle B$ and $\angle C$ respectively. Show that $O B>O C$.

दी गई आकृति में, $A B>A C$ है तथा $B O$ तथा $C O$ क्रमशः $\angle B$ तथा $\angle C$ के समद्विभाजक हैं। दर्शाइए कि $O B>O C$ है।

OR

In the figure below, O is the mid point of $A B$ and $C D$, prove that $A C=B D$.

दी गई आकृति में, बिन्दु O रेखाखंड $A B$ व $C D$ का मध्य बिन्दु है। सिद्ध कीजिए कि $A C=B D$.

14. Plot the points $A(6,6), B(4,4), C(-1,-1)$ in the cartesian plane and show that the points are collinear.

बिंदुओं $\mathrm{A}(6,6), \mathrm{B}(4,4)$ व $\mathrm{C}(-1,-1)$ को कार्तीय तल में प्रदर्शित कीजिए तथा दिखाइए कि बिंदु A, B, तथा C संरेखीय है।

Section-C

Question numbers $\mathbf{1 5}$ to $\mathbf{2 4}$ carry three marks each.

15.

If $a=2+\sqrt{3}$, then find the value of $a+\frac{1}{a}$

यदि $\mathrm{a}=2+\sqrt{3}$ है, तो $\mathrm{a}+\frac{1}{\mathrm{a}}$ का मान ज्ञात कीजिए।

OR

If $a=2, b=3$ then find the values of the following :
(i) $\left(a^{b}+b^{a}\right)^{-1}$
(ii) $\left(a^{a}+b^{b}\right)^{-1}$

यदि $\mathrm{a}=2, \mathrm{~b}=3$ तब निम्न का मान ज्ञात कीजिये।
(i) $\quad\left(a^{b}+b^{a}\right)^{-1}$ (ii) $\quad\left(a^{a}+b^{b}\right)^{-1}$
16. Represent $\sqrt{3.2}$ on the number line.

संख्या रेखा पर $\sqrt{3.2}$ के संगत बिन्दु ज्ञात कीजिए।
17. Factorize : $\mathrm{a}^{3}-\frac{1}{\mathrm{a}^{3}}-2 \mathrm{a}+\frac{2}{\mathrm{a}}$.

गुणन खण्ड कीजिए : $\mathrm{a}^{3}-\frac{1}{\mathrm{a}^{3}}-2 \mathrm{a}+\frac{2}{\mathrm{a}}$

OR
If $(x-3)$ and $\left(x-\frac{1}{3}\right)$ are the factors of $a x^{2}+5 x+b$, then show that $a=b$.
यदि $a x^{2}+5 x+b$ के गुणनखण्ड $(x-3)$ और $\left(x-\frac{1}{3}\right)$ हों तो दर्शाइए कि $a=b$
18. Find the value of $x^{3}+y^{3}-12 x y+64$ when $x+y=-4$
$x^{3}+y^{3}-12 x y+64$ का मान ज्ञात कीजिए जब $x+y=-4$
19. In given figure $\mathrm{QP}|\mid \mathrm{ML}$. Find the value of x.

दी गई आकृति में $\mathrm{QP} \| \mathrm{ML}$ है। ' x ' का मान ज्ञात कीजिए।

OR

If two parallel lines are intersected by a transversal, prove that the bisectors of the two pairs of interior angles enclose a rectangle.

यदि दो समांतर रेखाओं को एक तिर्यक रेखा प्रतिच्छेद करे तो सिद्ध कीजिए कि एकांतर अंतःकोणों के दो युग्मों के समद्विभाजक एक आयत बनाते है।
20. In the following figure, in $\triangle X Y Z, \angle Y X Z=62^{\circ}$ and $\angle X Y Z=54^{\circ}$. If $Y O$ and $Z O$ are bisectors of $\angle X Y Z$ and $\angle X Z Y$ respectively of $\triangle X Y Z$, find $\angle O Z Y$ and \angle YOZ.

नीचे दी आकृति के $\triangle \mathrm{XYZ}$ में, $\angle \mathrm{YXZ}=62^{\circ}$ और $\angle \mathrm{XYZ}=54^{\circ}$ है। यदि YO और ZO क्रमशः $\angle \mathrm{XYZ}$ और $\angle \mathrm{XZY}$ के समद्विभाजक हैं, तो $\angle \mathrm{OZY}$ और $\angle \mathrm{YOZ}$ ज्ञात कीजिए।

21. Show that angle of an equilateral Δ are 60° each.

दर्शाए कि समबाहु त्रिभुज का प्रत्येक कोण 60° का है ।
22. Diagonals $P R$ and $S Q$ of a quadrilateral $P Q R S$ meet in O. Prove that
$\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}+\mathrm{SP}<2(\mathrm{PR}+\mathrm{QS})$
चतुर्भुज PQRS के विकर्ण PR तथा SQ परस्पर O पर काटते हैं। सिद्ध कीजिए
$\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}+\mathrm{SP}<2(\mathrm{PR}+\mathrm{QS})$
23. In $\triangle X Y Z, Y O$ and $Z O$ are the bisectors of $\angle X Y Z$ and $\angle X Z Y$ respectively. If $\angle X=62^{\circ}$, $\angle X Y Z=54^{\circ}$, then find $\angle O Z Y$.
$\triangle X Y Z$ में, $Y O$ तथा $Z O$ क्रमशः $\angle X Y Z$ तथा $\angle X Z Y$ के समद्विभाजक हैं। यदि $\angle X=62^{\circ}, \angle X Y Z=54^{\circ}$ हैं, तो $\angle O Z Y$ ज्ञात कीजिए।
24.

Find the area of a triangle whose perimeter is 42 cm and two of its sides are 18 cm and 10 cm .
उस त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसका परिमाप 42 सेमी है तथा इसकी दो भुजाएँ 18 सेमी और 10 सेमी है।

Section-D

Question numbers $\mathbf{2 5}$ to $\mathbf{3 4}$ carry four marks each.

25.

If $\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}=a+b \sqrt{7}$, find a and b where a and b are rational.

यदि $\frac{\sqrt{7}-1}{\sqrt{7}+1}-\frac{\sqrt{7}+1}{\sqrt{7}-1}=a+b \sqrt{7}$ तो a, b का मान ज्ञात कीजिए। जबकि a तथा b परियेय संख्या है।

OR

Simplify : $\frac{2 \sqrt{6}}{\sqrt{2}+\sqrt{3}}+\frac{6 \sqrt{2}}{\sqrt{6}+\sqrt{3}}-\frac{8 \sqrt{3}}{\sqrt{6}+\sqrt{2}}$.
सरल कीजिए : $\frac{2 \sqrt{6}}{\sqrt{2}+\sqrt{3}}+\frac{6 \sqrt{2}}{\sqrt{6}+\sqrt{3}}-\frac{8 \sqrt{3}}{\sqrt{6}+\sqrt{2}}$.
26. Express $2.3 \overline{6}+0 . \overline{23}$ as a fraction in simplest form.
$2.3 \overline{6}+0 . \overline{23}$ को सरलतम भिन्र के रूप में व्यक्त कीजिए।
27. Find the value of ' a ' and ' b ' so that polynomial $\left(x^{3}-10 x^{2}+\mathrm{a} x+\mathrm{b}\right)$ is exactly divisible by $(x-1)$ as well as $(x-2)$
' a ' तथा ' b ' का मान ज्ञात कीजिए जब बहुपद $\left(x^{3}-10 x^{2}+\mathrm{a} x+\mathrm{b}\right),(x-1)$ तथा $(x-2)$ से पूर्णतया विभाज्य है।
28. If $x+y=12$ and $x y=27$, then find $x^{3}+y^{3}$.

यदि $x+y=12$ तथा $x y=27$ तो $x^{3}+y^{3}$ ज्ञात कीजिए।
29. If $\left(x^{2}-1\right)$ is a factor of $\mathrm{p} x^{4}+\mathrm{q} x^{3}+\mathrm{r} x^{2}+\mathrm{s} x+\mathrm{t}$, show that $\mathrm{p}+\mathrm{r}+\mathrm{t}=\mathrm{q}+\mathrm{s}=0$ यदि $\mathrm{p} x^{4}+\mathrm{q} x^{3}+\mathrm{r} x^{2}+\mathrm{s} x+\mathrm{t}$ का एक गुणनखंड $\left(x^{2}-1\right)$ है, तो दर्शाइए कि $\mathrm{p}+\mathrm{r}+\mathrm{t}=\mathrm{q}+\mathrm{s}=0$

OR

Using identities, evaluate :
(i) $(106)^{3}$
(ii) $(998)^{3}$

सर्वसमिकाओं का प्रयोग कर मान निकालिए :
(i) $(106)^{3}$
(ii) $(998)^{3}$
30. Find the co-ordinates of the points A, B, C, D, E and F. Which of the points are mirror images in
(i) x-axis
(ii) y-axis from the following figure.

दी गई आकृति में A, B, C, D, E और F बिन्दुओं के निर्देशांक बताइए। इनमें से कौन से बिन्दुआं के दर्पण-प्रतिबिम्ब
(i) x-अक्ष,
(ii) y-अक्ष में हैं।

31. In the given figure, the side QR of $\triangle \mathrm{PQR}$ is produced to a point S . If the bisectors of $\angle \mathrm{PQR}$ and $\angle \mathrm{PRS}$ meet at T , then prove that $\angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$.

नीचे दी गई आकृति में, $\triangle \mathrm{PQR}$ की भुजा QR को बिन्दु S तक बढ़ाया गया है। यदि $\angle \mathrm{PQR}$ और $\angle \mathrm{PRS}$ के समद्विभाजक बिन्दु T पर मिलते हैं, तो सिद्ध कीजिए कि $\angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$.

32. In the given figure, if $A B=F E, B C=E D, A B \perp B D$ and $F E \perp E C$, then prove that $A D=F C$.

दी गयी आकृति में, यदि $A B=F E, B C=E D, A B \perp B D$ और $F E \perp E C$ है तो सिद्ध कीजिए कि $A D=F C$.

33. In right $\triangle \mathrm{ABC}$ in given figure, right angled at C, M is the midpoint of hypotenuse $A B, C$ is joined to M and produced to a point D such that $\mathrm{DM}=\mathrm{CM}$. Point D is joined to point B . Show that
(i) $\Delta \mathrm{AMC} \cong \Delta \mathrm{BMD}$
(ii) $\angle \mathrm{DBC}$ is a right angle

दी गई आकृति में एक समकोण त्रिभुज ABC में जिसका कोण C समकोण है। M
कर्ण AB का मध्य-बिंदु है। C को M से मिलाकर D तक इस प्रकार बढ़ाया गया है
कि $\mathrm{DM}=\mathrm{CM}$ है। बिंदु D को बिन्दु B से मिला दिया है दर्शाइए कि :
(i) $\Delta \mathrm{AMC} \cong \triangle \mathrm{BMD}$
(ii) $\angle \mathrm{DBC}$ एकसमकोण है।

34. $\triangle A B C$ is an isosceles triangle with $A B=A C$ and $A D$ bisects the exterior angle A. Prove that $A D \| B C$.
$A B C$ एक समद्विबाहु त्रिभुज है जिस में $A B=A C$ तथा $A D$ बहिष्कोण A का समद्विभाजक है। सिद्ध कीजिए कि $A D \| B C$.

