SUMMATIVE ASSESSMENT -I (2011) संकलित परीक्षा -।
 MATHEMATICS / गणित
 Class - IX / कक्षा - IX

Maximum Marks: 90
निर्धारित समय : 3 घण्टे
अधिकतम अंक : 90

General Instructions:

(i) All questions are compulsory.
(ii) The question paper consists of 34 questions divided into four sections A, B, C and D. Section A comprises of 8 questions of 1 mark each, section B comprises of 6 questions of 2 marks each, section C comprises of 10 questions of 3 marks each and section D comprises 10 questions of 4 marks each.
(iii) Question numbers 1 to 8 in section-A are multiple choice questions where you are to select one correct option out of the given four.
(iv) There is no overall choice. However, internal choice have been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculator is not permitted.

सामान्य निर्देश :
(i) सभी प्रश्न अनिवार्य हैं।
(ii) इस प्रश्न पत्र में 34 प्रश्न हैं, जिन्हें चार खण्डों अ, ब, स तथा द में बांटा गया है। खण्ड - अ में 8 प्रश्न हैं जिनमें प्रत्येक 1 अंक का है, खण्ड - ब में 6 प्रश्न हैं जिनमें प्रत्येक के 2 अंक हैं, खण्ड - स में 10 प्रश्न हैं जिनमें प्रत्येक के 3 अंक है तथा खण्ड - द में 10 प्रश्न हैं जिनमें प्रत्येक के 4 अंक हैं।
(iii) खण्ड अ में प्रश्न संख्या 1 से 8 तक बहुविकल्पीय प्रश्न हैं जहां आपको चार विकल्पों में से एक सही विकल्प चुनना है।
(iv) इस प्रश्न पत्र में कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 2 अंकों के एक प्रश्न में, 3 अंकों के 3 प्रश्नों में और 4 अंकों के 2 प्रश्नों में दिए गए हैं। प्रत्येक प्रश्न में एक विकल्प का चयन करें।
(v) कैलकुलेटर का प्रयोग वर्जित है।

Section-A

Question numbers 1 to 8 carry one mark each. For each question, four alternative choices have been provided of which only one is correct. You have to select the correct choice.
1.

The value of $0 . \overline{2}$ in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$ is :
(A) $\frac{1}{5}$
(B) $\frac{2}{9}$
(C) $\frac{2}{5}$
(D) $\frac{1}{8}$

संख्या $0 . \overline{2}$ का $\frac{\mathrm{p}}{\mathrm{q}}$ रूप (जबकि p और q पूर्णांक हैं तथा $\mathrm{q} \neq 0$) होगा :
(A) $\frac{1}{5}$
(B) $\frac{2}{9}$
(C) $\frac{2}{5}$
(D) $\frac{1}{8}$
2.

Zero of the polynomial $3 \pi x-4$ is :
(A) $\frac{4}{3 \pi}$
(B) $\frac{3 \pi}{4}$
(C) $\frac{4 \pi}{3}$
(D) 0

बहुपद $3 \pi x-4$ का शून्यक है :
(A) $\frac{4}{3 \pi}$
(B) $\frac{3 \pi}{4}$
(C) $\frac{4 \pi}{3}$
(D) 0
3. Which of the following is a polynomial?
(A) $\frac{x^{2}}{3}-\frac{5}{x^{2}}$
(B) $\frac{2 x+1}{3 x+4}$
(C) $\sqrt{5 x}+7$
(D) $x^{3}+\frac{3 x^{5 / 2}}{\sqrt{x}}$

निम्न में से कौन सा बहुपद हैं ?
(A) $\frac{x^{2}}{3}-\frac{5}{x^{2}}$
(B) $\frac{2 x+1}{3 x+4}$
(C) $\sqrt{5 x}+7$
(D) $x^{3}+\frac{3 x^{5 / 2}}{\sqrt{x}}$
4. Zeros of the polynomial $x^{2}-7 x+10$ are :
(A) $\quad-2$ and -5
(B) 3 and 4
(C) 2 and 5
(D) 2 and -5 बहुपद $x^{2}-7 x+10$ के शून्यक हैं :
(A) $\quad-2,-5$
(B) 3,4
(C) 2,5
(D) $2,-5$
5. In the figure, if $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}+\angle \mathrm{F}=\mathrm{k}$ right angles, then k is

(A) 2
(B) 3
(C) 4
(D) 5

आकृति में, यदि $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}+\angle \mathrm{D}+\angle \mathrm{E}=\mathrm{k} \times$ समकोण, तो k बराबर है :

(A) 2
(B) 3
(C) 4
(D) 5
6. $\triangle \mathrm{PQR} \cong \triangle \mathrm{ABC}$, if $\mathrm{PQ}=5 \mathrm{~cm} . \angle \mathrm{Q}=40^{\circ}$ and $\angle \mathrm{P}=80^{\circ}$ then which of the following are true ?
(A) $\mathrm{AB}=5 \mathrm{~cm}, \angle \mathrm{~A}=60^{\circ}$
(B) $\mathrm{AB}=5 \mathrm{~cm}, \angle \mathrm{C}=60^{\circ}$
(C) $\mathrm{BC}=5 \mathrm{~cm}, \angle \mathrm{C}=60^{\circ}$
(D) $\mathrm{BC}=5 \mathrm{~cm}, \angle \mathrm{~B}=40^{\circ}$
$\triangle \mathrm{PQR} \cong \triangle \mathrm{ABC}$ यदि $\mathrm{PQ}=5$ से.मी., $\angle \mathrm{Q}=40^{\circ}$ तथा $\angle \mathrm{P}=80^{\circ}$, तो निम्न में से कौन-सा कथन सत्य है ?
(A) $\mathrm{AB}=5$ से.मी., $\angle \mathrm{A}=60^{\circ}$
(B) $\mathrm{AB}=5$ से.मी., $\angle \mathrm{C}=60^{\circ}$
(C) $\mathrm{BC}=5$ से.मी., $\angle \mathrm{C}=60^{\circ}$
(D) $\mathrm{BC}=5$ से.मी., $\angle \mathrm{B}=40^{\circ}$
7. Heron's formula is :
(A) $\Delta=\sqrt{\mathrm{s}(\mathrm{s}+\mathrm{a})(\mathrm{s}+\mathrm{b})(\mathrm{s}+\mathrm{c})}$
(B) $\quad \Delta=\sqrt{(s-a)(s-b)(s-c)}$
(C) $\Delta=\sqrt{s(s-a)(s-b)(s-c)}, s=a+b+c$
(D) $\Delta=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}, 2 \mathrm{~s}=\mathrm{a}+\mathrm{b}+\mathrm{c}$

हेराँन का सूत्र है ।
(A) $\Delta=\sqrt{s(s+a)(s+b)(s+c)}$
(B) $\quad \Delta=\sqrt{(s-a)(s-b)(s-c)}$
(C) $\quad \Delta=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}, \mathrm{s}=\mathrm{a}+\mathrm{b}+\mathrm{c}$
(D) $\Delta=\sqrt{\mathrm{s}(\mathrm{s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}, 2 \mathrm{~s}=\mathrm{a}+\mathrm{b}+\mathrm{c}$
8. Area of an equilateral triangle of side ' a ' units can be calculated by using the formula :
(A) $\sqrt{s^{2}(s-a)^{2}}$
(B) $(s-a) \sqrt{s^{2}(s-a)}$
(C) $\sqrt{s(s-a)^{2}}$
(D) $(s-a) \sqrt{s(s-a)}$

एक समबाहु त्रिभुज जिसकी भुजा ' a ' इकाई है, का क्षेत्रफल निम्न सूत्र से परिकलित किया जा सकता है :
(A) $\sqrt{s^{2}(s-a)^{2}}$
(B) $(s-a) \sqrt{s^{2}(s-a)}$
(C) $\sqrt{s(s-a)^{2}}$
(D) $(s-a) \sqrt{s(s-a)}$

Section-B

Question numbers 9 to 14 carry two marks each.
9. π is :
(A) a rational number
(B) an integer
(C) an irrational number
(D) a whole number
π एक:
(A) परिमेय संख्या है।
(B) पूर्णांक है।
(C) अपरिमेय संख्या है।
(D) पूर्ण संख्या है।
10.

Factorize : $(2 x+4)^{2}-1$
$(2 x+4)^{2}-1$ के गुणनखण्ड कीजिए।
11. Factorise : $x^{2}-2 \sqrt{3} x-45$

गुणनखण्ड कीजिए : $x^{2}-2 \sqrt{3} x-45$
12. Evaluates (99) ${ }^{3}$ using suitable identity.

उपयुक्त सर्वसमिका का उपयोग करके (99) ${ }^{3}$ का मान ज्ञात कीजिए।
13. In the given figure, if POR and QOR form a linear pair and $a-b=80^{\circ}$ then find relation between a and b.

दी गई आकृति में, यदि POR और QOR एक रैखिक युग्म बनाते हैं तथा $a-b=80^{\circ}$ तो a तथा b का सम्बंध ज्ञात कीजिए।

OR

In the given figure, $\angle A B D=130^{\circ}$ and $\angle E A C=120^{\circ}$. Prove that $A B>A C$.

दी गई आकृति में, $\angle A B D=130^{\circ}$ तथा $\angle E A C=120^{\circ}$ है। सिद्ध कीजिए कि $A B>A C$ है।

14. Plot the points $A(3,0), B(3,3)$ and $C(0,3)$ in a cartesian plane. Join $O A, A B, B C$ and

CO. Name the figure so formed and write its one property.

बिन्दुओं $A(3,0), B(3,3)$ तथा $C(0,3)$ को निर्देशांक तल में आलेखित कीजिए। $O A, A B, B C$ तथा $C O$ को मिलाइए इस प्रकार बनी आकृति का नाम लिखिए तथा उसका एक गुणधर्म (property) भी लिखिए।

Section-C

Question numbers $\mathbf{1 5}$ to $\mathbf{2 4}$ carry three marks each.
15.

Simplify : $\left(\frac{3^{-1} \times 5^{2}}{3^{2} \times 5^{-4}}\right)^{1 / 3} \times\left(\frac{3^{-1} \times 5^{-1}}{3^{3} \times 5^{-5}}\right)^{-1 / 2}$

सरल कीजिए : $\left(\frac{3^{-1} \times 5^{2}}{3^{2} \times 5^{-4}}\right)^{1 / 3} \times\left(\frac{3^{-1} \times 5^{-1}}{3^{3} \times 5^{-5}}\right)^{-1 / 2}$

OR

If a and b are two rational numbers such that $\frac{3+2 \sqrt{3}}{3-2 \sqrt{3}}=a+b \sqrt{3}$, find the values of a and b.

यदि a और b दो परिमेय संख्याए इस प्रकार हैं कि $\frac{3+2 \sqrt{3}}{3-2 \sqrt{3}}=a+b \sqrt{3}$, तो a तथा b क मान ज्ञात कीजिए।
16.

Prove that $\quad \frac{2^{30}+2^{29}+2^{28}}{2^{31}+2^{30}-2^{29}}=\frac{7}{10}$
सिद्ध कीजिये कि $\quad \frac{2^{30}+2^{29}+2^{28}}{2^{31}+2^{30}-2^{29}}=\frac{7}{10}$:
17. Expand the following :
(i) $(x-2 y-3 z)^{2}$.
(ii) $(y-\sqrt{3})^{2}$.

निम्नलिखित के प्रसार कीजिए :
(i) $(x-2 y-3 z)^{2}$.
(ii) $\quad(y-\sqrt{3})^{2}$.

OR
Factorize : $x^{4}+x^{2}+1$
गुणनखण्ड कीजिए : $x^{4}+x^{2}+1$
18. Evaluate $x^{4}+\frac{1}{x^{4}}$ if $x-\frac{1}{x}=6$

यदि $x-\frac{1}{x}=6$ हो, तो $x^{4}+\frac{1}{x^{4}}$ का मान ज्ञात कीजिए।
19. In figure below, $\mathrm{QT} \perp \mathrm{PR}, \angle \mathrm{TQR}=60^{\circ}$ and $\angle \mathrm{SPR}=40^{\circ}$. Find the values of x and y.

आकृति में, $\mathrm{QT} \perp \mathrm{PR}, \angle \mathrm{TQR}=60^{\circ}$ और $\angle \mathrm{SPR}=40^{\circ}$ है। x तथा y के मान ज्ञात कीजिए।

Figure 6

OR

In a $\triangle A B C, \angle A-\angle B=33^{\circ}$ and $\angle B-\angle C=18^{\circ}$. Find the measure of each angle of the triangle.
$\triangle \mathrm{ABC}$ में $\angle \mathrm{A}-\angle \mathrm{B}=33^{\circ}$ तथा $\angle \mathrm{B}-\angle \mathrm{C}=18^{\circ}$. त्रिभुज के प्रत्येक कोण का माप ज्ञात कीजिए।
20. In the given figure, if BE is bisector of $\angle \mathrm{ABC}$ and CE is bisector of $\angle \mathrm{ACD}$, then show that $\angle \mathrm{BEC}=\frac{1}{2} \angle \mathrm{BAC}$.

दी गई आकृति में, यदि BE तथा CE क्रमशः $\angle \mathrm{ABC}$ व $\angle \mathrm{ACD}$ के समद्विभाजक हो, तो दर्शाइए कि $\angle \mathrm{BEC}=\frac{1}{2} \angle \mathrm{BAC}$.

21. In the figure find ' x '

दी गई आकृति में ' x ' का मान ज्ञात कीजिए।

22. $\triangle A B C$ is an isosceles triangle with $A B=A C$. Side $B A$ is produced to D such that $A B=A D$. Prove that $\angle \mathrm{BCD}$ is a right angle.

एक समद्विबाहु त्रिभुज ABC में $\mathrm{AB}=\mathrm{AC}$. भुजा BA को D तक इस प्रकार बढ़ाया गया कि $\mathrm{AB}=\mathrm{AD}$ सिद्ध कीजिए
23. In the figure given below, ray OS stands on a line POQ. Ray OR and ray OT are angle bisectors of $\angle \mathrm{POS}$ and $\angle \mathrm{SOQ}$ respectively. If $\angle \mathrm{POS}=x$, find $\angle R O T$.

निम्न आकृति में एक किरण OS रेखा POQ पर खड़ी है किरण OR तथा OT क्रमशः $\angle \mathrm{POS}$ तथा $\angle \mathrm{SOQ}$ के समद्विभाजक हैं। यदि $\angle \mathrm{POS}=x$ है, तो $\angle \mathrm{ROT}$ ज्ञात कीजिए।

24. The sides of a triangular plot are $50 \mathrm{~m}, 65 \mathrm{~m}$ and 65 m . Find the cost of laying grass in this plot at the rate of $₹ 7$ per m^{2}.

किसी त्रिभुजाकार भूखंड की भुजाएँ $50 \mathrm{~m}, 65 \mathrm{~m}$ और 65 m हैं। 7 ₹. प्रति m^{2} की दर से इस भूखंड में घास लगवाने का व्यय ज्ञात कीजिए।

Section-D

Question numbers $\mathbf{2 5}$ to $\mathbf{3 4}$ carry four marks each.

25.

If $x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ and $y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$, find the value of $x^{2}+x y+y^{2}$ यदि $x=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ और $y=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$, तो $x^{2}+x y+y^{2}$ का मान ज्ञात कीजिए।

OR

Express with rational denominator $\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$.
$\frac{1}{\sqrt{2}+\sqrt{3}+\sqrt{5}}$ को ऐसे व्यंजक के रूप में व्यक्त कीजिए जिस का हर एक परिमेय संख्या हो।
26.

Insert five rational numbers between $\frac{\sqrt{5}}{7}$ and $\frac{4}{9}$.
$\frac{\sqrt{5}}{7}$ तथा $\frac{4}{9}$ के बीच पाँच परिमेय संख्याएं लिखें।
27. Without actual division, prove that $\left(2 x^{4}-6 x^{3}+3 x^{2}+3 x-2\right)$ is exactly divisible by $\left(x^{2}-3 x+2\right)$. बिना भाग किये दर्शाइए कि बहुपद $\left(2 x^{4}-6 x^{3}+3 x^{2}+3 x-2\right),\left(x^{2}-3 x+2\right)$ से पूर्णतया विभाजित होता है।
28. If $x+y+z=12, x^{2}+y^{2}+z^{2}=64$, find the value of $x y+y z+z x$.

यदि $x+y+z=12, x^{2}+y^{2}+z^{2}=64$ हो, तो $x y+y z+z x$ का मान ज्ञात कीजिए।
29. Factorize : $x^{3}+2 x^{2}-5 x-6$

गुणनखण्ड कीजिए : $x^{3}+2 x^{2}-5 x-6$

OR

Simplify : $\frac{\left(a^{2}-b^{2}\right)^{3}+\left(b^{2}-c^{2}\right)^{3}+\left(c^{2}-a^{2}\right)^{3}}{(a-b)^{3}+(b-c)^{3}+(c-a)^{3}}$
सरल कीजिए : $\frac{\left(a^{2}-b^{2}\right)^{3}+\left(b^{2}-c^{2}\right)^{3}+\left(c^{2}-a^{2}\right)^{3}}{(a-b)^{3}+(b-c)^{3}+(c-a)^{3}}$
30. Plot the points $A(2,0), B(2,2), C(0,2)$ and draw the line segments $O A, A B, B C$ and $C O$. What figure do you obtain? Find its area.
$\mathrm{A}(2,0), \mathrm{B}(2,2), \mathrm{C}(0,2)$ को आलेखित कीजिए और रेखाखण्ड $\mathrm{OA}, \mathrm{AB}, \mathrm{BC}$ और CO खींचिए। आकृति को पहचानिए और क्षेत्रफल ज्ञात कीजिए।
31.

In $\triangle \mathrm{ABC}, \angle \mathrm{B}=45^{\circ}, \angle \mathrm{C}=55^{\circ}$ and bisector of $\angle \mathrm{A}$ meets BC at a point D . Find the measure of angle $\angle \mathrm{ADB}$ and $\angle \mathrm{ADC}$.

एक $\triangle \mathrm{ABC}$ में $\angle \mathrm{B}=45^{\circ}$ तथ $\angle \mathrm{C}=55^{\circ}$ है। $\angle \mathrm{A}$ का समद्विभाजक भुजा BC से बिंदु D पर मिलता है। $\angle \mathrm{ADB}$ तथा $\angle \mathrm{ADC}$ की माप ज्ञात कीजिए।
32. In the following figure, $A B$ is a line segment. P and Q are points on opposite sides of $A B$ such that each of them is equidistant from the points A and B. Show that the line $P Q$ is
perpendicular bisector of $A B$.

निम्न आकृति में, $A B$ एक रेखाखंड है तथा P तथा Q उसकी विपरीत दिशाओं में इस प्रकार के बिन्दु हैं कि दोनो P तथा Q, बिन्दुओं A तथा B से समदूरस्थ है। दर्शाइए कि रेखा $P Q, A B$ का लम्ब समद्विभाजक है।

33. In figure below, D is a point on side $B C$ of $\triangle A B C$ such that $A D=A C$. Show that $A B>A D$.

आकृति में, $\triangle \mathrm{ABC}$ की भुजा BC पर बिन्दु D इस प्रकार स्थित है कि $\mathrm{AD}=\mathrm{AC}$ है। सिद्ध कीजिए कि $\mathrm{AB}>$ AD है।

34.

In the given figure, the side $Q R$ of $\triangle P Q R$ is produced to a point S. If the bisector $\angle \mathrm{PQR}$ and $\angle \mathrm{PRS}$ of meet at point T , then prove that $\angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$.

दी हुई आकृति में $\triangle \mathrm{PQR}$ की भुजा QR को बिन्दु S तक बढ़ाया गया है। यदि $\angle \mathrm{PQR}$ तथा $\angle \mathrm{PRS}$ के समद्विभाजक बिन्दु

T पर मिलते है तो सिद्ध कीजिए कि $\angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$.

